
 

 

1
ISSN 0971-0388 

 

Aligarh Journal of Statistics  

Vol. 44(2024), 127-142 
 

Lindley’s Approximation in Bayesian Parameter Estimation for the 

Quadratic Transmuted Exponential Model 

 

A. Jabarali
1
, Benitta Susan Aniyan

2
 and Kumarapandiyan Gnanasegaran

3 

[Received on November, 2023. Accepted on June, 2024] 

   ABSTRACT  

In the contemporary era, a notable emphasis exists on the practice of generalizing probability 

distributions, a common approach observed across diverse research domains. This practice 

entails extending pre-existing baseline probability models to encapsulate and adeptly analyze 

the intricacies inherent in data. The quadratic transmuted family of distributions, distinguished 

by its amalgamation of the cumulative distribution function and the quantile function of the 

base-line distribution. The current study is dedicated to scrutinizing the behaviors exhibited by 

parameters in the exponential distribution in relation to the quadratic rank transmuted map. 

Bayesian methodology is the chosen avenue for estimating these parameters, with a deliberate 

selection of non-informative priors considering symmetric and asymmetric loss functions, 

facilitating the estimation of the rate and transmuted parameters within the Quadratic 

Transmuted Exponential Distribution. Since Bayes estimator in closed-form is unfeasible, the 

study leverages Lindley’s approximation as a computational tool for determining the Bayes 

estimators through a comprehensive Monte Carlo simulation study, particularly emphasizing 

evaluating their posterior risks. The study applies these research findings in a practical context 

by addressing a real-life data application, thereby underscoring the tangible significance and 

applicability of the research outcomes. 

1. Introduction 

Exponential distribution is a valuable tool for analyzing positively skewed lifetime data and has 

extensive applications in fields such as reliability engineering and life testing. It is particularly well-

suited for situations characterized by a constant hazard rate. However, it may not be suitable for 

modeling real-life phenomena that exhibit bathtub failure rates. It’s worth noting that the Exponential 

distribution represents a special case within the broader frameworks of both the Weibull and Gamma 

distributions as noted by Gupta and Kundu (1999), Gupta and Kundu (2007), Oguntunde and 

Adejumo (2015). When assuming the rate parameter θ, the Cumulative Distribution Function (CDF) 

of the exponential random variable X is expressed as follows:                   

                                                      
                                       

   (1.1) 

The corresponding Probability Density Function (PDF) of X is, 

                                                                         (1.2) 
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The concept of transmutation involves the functional composition of the cumulative distribution 

function with the inverse cumulative distribution function (quantile function) of a baseline 

distribution. This concept was originally introduced by Shaw and Buckley (2007), who pioneered the 

quadratic transmuted family of distributions, known for its flexibility in modeling skewed 

distributions. Shaw and Buckley (2009) also introduced the quadratic transmutation map method as a 

means to generate novel families of distributions by introducing a parameter to the baseline 

distributions (Jabarali et al. (2024)). 

This approach has led to the creation of various flexible probability distributions. For instance, 

Merovci (2013a) introduced the transmuted exponentiated exponential distribution, while  

Elbatal et al. (2013a), Elbatal et al. (2013) introduced the transmuted generalized inverted exponential 

distribution and transmuted generalized linear exponential distribution, respectively. Tian et al. (2014) 

introduced the transmuted linear exponential distribution, analyzing its properties and comparing 

estimators through simulation. Owoloko et al. (2015) derived the transmuted exponential distribution 

and employed the method of least squares for parameter estimation, along with discussing structural 

properties like mean, moments, and quantile functions. Khan et al. (2017a) proposed the transmuted 

generalized exponential distribution and explored its mathematical properties. Rahman  

et al. (2018a), Rahman et al. (2018c) introduced the cubic transmuted exponential distribution, 

investigating its mathematical characteristics. 

Furthermore, Okorie and Akpanta (2019) introduced the transmuted generalized inverted exponential 

distribution and derived its properties. Most recently, Ghost et al (2021) introduced the transmuted 

generalized linear exponential distribution, elucidating its mathematical properties, comparing 

estimators using simulation data, and suggesting real-life applications. It is noteworthy that 

transmuted distributions have proven to be highly flexible and applicable in diverse fields such as 

survival analysis, reliability, economics, engineering, insurance, and bio-statistics. 

In this study, the authors undertake a Bayesian analysis of the quadratic transmuted exponential 

distribution, a formulation initially developed by Owoloko et al. (2015). Notably, there is a gap in the 

existing literature concerning investigating parameter behaviors within the QTED. Thus, the primary 

objective of this research is to comprehensively examine the performance of these parameters through 

Bayesian estimation techniques, employing Lindley’s approximation. Within this Bayesian 

framework, non-informative uniform priors are adopted to derive Bayes estimates of the parameters. 

These estimates are subsequently scrutinized under various loss functions, different sets of 

parameters, and diverse sample sizes, with a particular focus on mean square errors for comparative 

assessment. 

1.1 Quadratic Transmuted Exponential Distribution 

The PDF of a quadratic transmuted random variable X is given as, 

                                                            (1.3) 

where, λ is the transmuted parameter.  

Also, the CDF of X is given as; 

                
                               
                                                  

         (1. 4) 

G(x) and g(x) is the CDF and PDF of the baseline distribution respectively. According to Shaw and 

Buckley (2009), if λ = 0, f(x) and F(x) reduces to the baseline distributions. 
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To obtain the PDF of QTED, we substitute equation (1.2) in equation (1.3), which gives 

                                                                                     

After some simplifications, we get, 

                                                       (1.5) 

where, θ is the rate parameter and λ is the transmuted parameter. 

To obtain the CDF of QTED, we substitute equation (1.1) in equation (1.4). 

                            
 
 

After some algebraic simplifications, we get, 

                                 
                                 
                                                  

         (1.6) 

In particular, if λ = 0, the transmuted exponential distribution reduces to the ordinary exponential 

distribution. 

The reliability function and hazard rate function of the mentioned distribution are as follows: 

                                  

and 

     
             

           
 

The Mean Time to Failure (MTTF) of QTED is, 

     
   

  
 

The paper is structured into six sections, with this introduction as the first. Section 2 elaborates on the 

methodology of Bayesian approaches, providing a foundational understanding of the analytical 

techniques employed. Section 3 details Bayes estimates of QTED with different loss functions. 

Section 4 is dedicated to a comprehensive simulation study conducted under different prior 

distributions. Section 5 introduces real-world data used for the assessment of Bayes estimators. 

Finally, Section 6 offers concluding remarks summarizing the findings and insights derived from this 

research. 

2. Methodology 

This section delves into the Bayesian parameter estimation method, a statistical approach that 

integrates sample data with prior knowledge about the parameters before observing the sample. In 

Bayesian methodology, the model parameters are treated as random variables, and an appropriate 

probability distribution is selected to represent these parameters based on the available prior 

information. The choice of prior distribution is a crucial step in the Bayesian framework. In situations 

where there is limited or vague prior knowledge about the parameters, it is common practice to 

employ non-informative priors. For this research, the authors opt to use a Uniform prior for the 
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parameters denoted as Θ=(θ1, θ2,...,θk). The joint posterior distribution is derived by combining the 

likelihood of the sample data with the chosen prior distribution. This joint posterior distribution is 

represented as: 

                                             
          

             
 

 

                 (2.1) 

Where: π(Θ) represents the joint prior distribution of Θ=(θ1, θ2,...,θk).        is the likelihood 

function.        denotes the joint posterior distribution, which combines the information from the 

sample data and the prior (Jabarali & Kannan et al. (2015); Kannan et al. (2016); Jabarali et al. 

(2016))  

2.1 Bayes Estimators of the Parameters under Different Loss Functions 

In the Bayesian approach for estimating unknown parameters, the specification of a loss function 

becomes necessary. A loss function, denoted as L( ,  ), can assume either symmetric or asymmetric 

characteristics (Jabarali et al. (2018)). The choice of an appropriate loss function is not governed by 

specific rules. If a loss function provides an equal footing for both overestimation and 

underestimation, it is categorized as symmetric in nature. A well-known example of a symmetric loss 

function is the Squared Error Loss Function (SELF), which was introduced by Legendre (1805). An 

alternative to symmetric loss functions is the use of asymmetric precautionary loss functions (PLF), as 

introduced by Norstrom (1996). These loss functions are designed to mitigate underestimation and 

yield conservative estimators. Another example of an asymmetric loss function is the linear 

exponential (LINEX) Loss function, originally proposed by Varian (1975). According to Soliman 

(2006), overestimation occurs when the parameter ’m’ is greater than zero, while underestimation 

occurs when ’m’ is less than zero. The LINEX loss function closely approximates the SELF when ’m’ 

is approximately equal to zero. Table 1 presents the expressions for Bayes estimators under the 

aforementioned loss functions for an unknown parameter α.  

 

Table 1: Bayes estimators under different loss functions. 

Loss Function Bayes Estimator Posterior Risk 

SELF=        
                              

PLF =
       

  
 

                                 

LINEX=                        
  

 
                      

              
         

2.2    Lindley’s Approximation Method 

The calculation of Bayes estimators under both symmetric and asymmetric loss functions entails 

working with integrals in a ratio form, as described in equation (2.1). These integrals do not lend 

themselves to analytical solutions. To estimate the parameters effectively, the researchers in this study 

employ Lindley’s approximation procedure, as introduced by Lindley (1980). The posterior 

expectation of an arbitrary function         is evaluated as 

 

                    
                               

                         
    (2.2) 
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where u(θ,λ) is a function of θ and λ only, L(θ,λ) is the log-likelihood function and ρ(θ,λ) is the log of 

joint prior of θ and λ. 

 

According to Lindley (1980) (2.2) is approximated aymptotically by; 

                                                                            

                                                                                     

                                                               (2.3) 

 

   and    are the MLE’s of   and λ respectively. 

 

Where, 

 

    
         

   
     

         

   
      

          

    
      

          

    
 

     
          

      
      

          

      
       

          

    
       

          

    
 

      
          

         
       

          

         
       

          

         
       

          

         
 

      
          

         
 

   

3. Bayes Estimators of QTED 

 

Maximum likelihood estimators are computed to estimate the parameters of the QTED within the 

framework of Bayesian estimation. The procedure for deriving these maximum likelihood estimators 

is elaborated upon below: 

 

3.1 Maximum Likelihood Estimator of QTED 

Let X1, X2,…Xn be a random sample of size n from the transmuted exponential distribution, with 

θ and λ as the parameters. The likelihood function of θ and λ is obtained as, 

 

                                                      
     (3.1) 

The corresponding log-likelihood function is given by; 

                                             
   

 
      (3.2) 

Differentiate (3.2) with respect to θ and λ 

  

  
 

 

 
         

     

             

 

   

 

  

  
  

        

             
                              

 

   

 

Equating the equations to zero and solving the resulting non-linear system of equations provides the 

MLEs for the parameters of QTED. 
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Given that this system of equations lacks an analytical solution, a numerical approach is required. The 

researchers employ the Newton-Raphson method to obtain the desired MLEs from the given 

equations. All computational procedures are carried out using the R statistical software. 

3.2 Posterior Distribution using Uniform Prior 

In this section, we have employed a Bayesian approach to estimate the unknown parameters of the 

QTED. The prior distributions for θ and λ are specified as follows: 

θ ∝ 1, ∀ θ ∈ (0,∞) and λ ∝ 1, ∀ λ ∈ [−1, 1]  

Given the assumption of independence between the prior distributions of the parameters, we can 

express the joint prior distribution of the parameters θ and λ as follows: 

 

                             ∝             ∈                (3.3) 

 

Therefore, by utilizing (2.1), (3.1), and (3.3), the joint posterior distribution of the parameters θ and λ, 

given the data x under a uniform prior, can be expressed as: 

         
              

                    
 

  

 

 

                            

 

                                
                          

   

                            
       

 

  

 

 

        (3.4) 

3.3 Bayes Estimators under Squared Error Loss Function (SELF) 

3.3.1 Bayes Estimators of θ under SELF 

The Bayes estimator of θ under SELF presented in Table [1]. The Bayes Estimator     , a function 

u=u(θ,λ) of the unknown parameters of TED under SELF is the posterior mean. From (2.2), 

                                                             

                                    
                               

                         
      (3.5) 

where, u(θ, λ) = θ 

                   

 

   

                                                            

 

   

 

ρ(θ, λ) = log(1) = 0 

It can be easily verified that; 

                                                                                                  

    
 

 
      

     
    

           

 

   

 

   

                                                                                            

 

     
  

  
  

    
      

           

 

   

  
     

       

              

 

   

                                                      

 



Lindley’s Approximation in Bayesian … 

 

133 
 

        
  

  
  

    
      

           

 

   

  
      

       

              

 

   

   
      

       

              

 

   

      

 

     
        

           

 

   

                                                                                                                   

 

       
           

              
                                                                                                     

 

   

 

 

       
    

              

              
                                                                                                   

 

   

 

 

       
   

      

              
  

    
       

              

 

   

                                                       

 

   

 

 

              
  

    
        

  

    
                                           

 

Using (2.3) and the above u-terms, L-terms and ρ terms, the Bayes Estimator of θ under SELF is, 

                                                                     
        (3.6) 

3.3.2 Bayes Estimators of λ under SELF 

The Bayes estimator of λ under SELF presented in Table 1. Then  

                                                             

                                    
                               

                         
    (3.7) 

where, u(θ, λ) = λ,        and        are the same in (3.5). 

It can be easily verified that;                                     

Following the procedure discussed in 3.3.1, we get, 

                                                                     
     (3.9) 

3.4 Bayes Estimators under PLF 

3.4.1 Bayes Estimators of θ under PLF 

Applying the same Lindley’s approach here as in (2.2) with u(θ, λ) = θ
2
; 

                                     . 

        and        are the same in (3.5). 

Following the procedure discussed in 3.3.1, we get, 

                                            
       

The Bayes estimator of θ under PLF is 
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  (3.9) 

3.4.2 Bayes Estimators of λ under PLF 

Applying the same Lindley’s approach here as in (2.2) with u(θ, λ) = λ
 2
; 

                                     . 

        and        are the same in (3.5). 

 

Following the procedure discussed in 3.3.1, we get, 

                                            
       

The Bayes estimator of θ under PLF is 

                                                              
    (3.10) 

3.5 Bayes Estimators under LINEX 

3.5.1 Bayes Estimators of θ under LINEX 

Applying the same Lindley’s approach here as in (2.2) with u(θ, λ) =e
-mθ

; 

                                              . 

        and        are the same in (3.5). 

 

Following the procedure discussed in 3.3.1, we get, 

                                                                 
        

 

The Bayes estimator of θ under LINEX is 

     
  

 
                                                            

     (3.11) 

3.5.2 Bayes Estimators of λ under LINEX 

Applying the same Lindley’s approach here as in (2.2) with u(θ, λ) =e
-mλ

; 

                                              . 

        and        are the same in (3.5). 

Following the procedure discussed in 3.3.1, we get, 

                                                                 
        

The Bayes estimator of λ under LINEX is 

     
  

 
                                                           

      (3.12) 

4. Simulation Study 

In this section, the estimated values of the rate parameter θ and the transmuted parameter λ for both 

maximum likelihood estimation and Bayesian estimation employing uniform prior information under 

the SELF, PLF and Linear-LINEX loss function has been presented. The simulation study is 

conducted to assess the performance of the Bayesian estimators derived in Section 3. The authors 

have selected sample sizes of n=10, 50, 100, and 150, along with a different range of parameter 

values, including θ=0.5 and 1.5, λ=-0.9, -0.5, 0.5, and 1, and m=-1 and +1. These simulations have 
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been iterated 1000 times using the R software. The generated samples are utilized to compute Bayes 

estimates and posterior risks. The simulation study results are thoroughly detailed in Tables 2-6, 

providing insights into the performance of the estimators under various scenarios and parameter 

configurations. 

Table 2: Maximum Likelihood Estimate values and MSE of θ and λ. 

  n = 10 n = 50 n = 100 n = 150 

                                            
0.5 -0.9 0.5089 -0.8119 0.5024 -0.8780 0.5008 -0.8934 0.5016 -0.8961 

  (0.0212) (0.1369) (0.0040) (0.0283) (0.0018) (0.0127) (0.0012) (0.0014) 

 -0.5 0.5422 -0.5265 0.5042 -0.5008 0.5042 -0.5089 0.5031 -0.5042 

  (0.0395) (0.2573) (0.0097) (0.1411) (0.0041) (0.0577) (0.0029) (0.0409) 

 0.5 0.5449 0.5449 0.5118 0.5036 0.5031 0.5190 0.5006 0.5214 

  (0.0576) (0.2204) (0.0210) (0.1247) (0.0161) (0.1081) (0.0129) (0.0919) 

 1 0.5991 0.9036 0.5629 0.8981 0.5526 0.9147 0.5434 0.9201 

  (0.0657) (0.0496) (0.0208) (0.0491) (0.0142) (0.0403) (0.0121) (0.0392) 

          

1.5 -0.9 1.5446 -0.8147 1.500 -0.8742 1.5071 -0.8916 1.5028 -0.8945 

  (0.1943) (0.1228) (0.0342) (0.0305) (0.0170) (0.0136) (0.0126) (0.0098) 

 -0.5 1.6418 -0.5524 1.5224 -0.4947 1.5073 -0.5019 1.5100 -0.5039 

  (0.3669) (0.2557) (0.0802) (0.1179) (0.0369) (0.0612) (0.0252) (0.0387) 

 0.5 1.3384 0.7912 1.5081 0.5258 1.5027 0.5186 1.5008 0.5125 

  (0.3194) (0.1687) (0.1486) (0.1371) (0.1304) (0.1101) (0.1076) (0.0979) 

 1 1.8032 0.9019 1.6733 0.9059 1.6472 0.9149 1.6231 0.9237 

  (0.6113) (0.0509) (0.1939) (0.0467) (0.1266) (0.0413) (0.1003) (0.0355) 

 

Table 3: Bayes estimate and its Posterior Risks of θ and λ under SELF. 

  n = 10 n = 50 n = 100 n = 150 

                                            

0.5 -0.9 0.5506 -0.6578 0.5119 -0.8013 0.5055 -0.8470 0.5048 -0.8633 

  (0.0150) (0.3352) (0.0029) (0.0402) (0.0014) (0.0155) (0.0010) (0.0102) 

 -0.5 0.5872 -0.3665 0.5129 -0.4512 0.5086 -0.4831 0.5059 -0.4871 

  (0.0195) (0.2637) (0.0038) (0.0510) (0.0019) (0.0246) (0.0014) (0.0167) 

 0.5 0.5763 0.4560 0.5182 0.4754 0.5062 0.5034 0.5026 0.5108 

  (0.0371) (0.2583) (0.0064) (0.0513) (0.0030) (0.0245) (0.0020) (0.0165) 

 1 0.5889 0.7441 0.5581 0.8232 0.5495 0.8690 0.5412 0.8870 

  (0.0406) (0.2475) (0.0070) (0.0392) (0.0034) (0.0164) (0.0021) (0.0109) 

          

1.5 -0.9 1.6718 -0.6667 1.5280 -0.7975 1.5214 -0.8456 1.5123 -0.8615 

  (0.1254) (0.3528) (0.0270) (0.0397) (0.0131) (0.0170) (0.0085) (0.0090) 

 -0.5 1.7798 -0.3907 1.5485 -0.4460 1.5204 -0.4764 1.5187 -0.4868 

  (0.1765) (0.2549) (0.0345) (0.0518) (0.0168) (0.0254) (0.0113) (0.0169) 

 0.5 1.3701 0.6499 1.5262 0.4959 1.5120 0.5028 1.5071 0.5022 

  (0.2187) (0.2777) (0.0553) (0.0495) (0.0270) (0.0249) (0.0178) (0.0168) 

 1 1.7727 0.7419 1.6573 0.8286 1.6379 0.8688 1.6162 0.8904 

  (0.3544) (0.2757) (0.0630) (0.0407) (0.0296) (0.0182) (0.0194) (0.0096) 
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Table 4: Bayes estimate and its Posterior Risks of θ and λ under PLF. 

  n = 10 n = 50 n = 100 n = 150 

                                            

0.5 -0.9 0.5641 0.8763 0.5147 0.8260 0.5069 0.8561 0.5058 0.8692 

  (0.0270) (3.0682) (0.0056) (3.2546) (0.0028) (3.4062) (0.0020) (3.4650) 

 -0.5 0.6036 0.6309 0.5166 0.5046 0.5105 0.5079 0.5073 0.5040 

  (0.0328) (1.9948) (0.0074) (1.9116) (0.0038) (1.9820) (0.0028) (1.9822) 

 0.5 0.6076 0.6828 0.5243 0.5266 0.5092 0.5272 0.5046 0.5267 

  (0.0626) (0.4536) (0.0122) (0.1024) (0.0060) (0.0476) (0.0040) (0.0318) 

 1 0.6224 0.8951 0.5643 0.8467 0.5526 0.8784 0.5431 0.8931 

  (0.0670) (0.3020) (0.0124) (0.0470) (0.0062) (0.0188) (0.0038) (0.0122) 

          

1.5 -0.9 1.7089 0.8929 1.5368 0.8220 1.5257 0.8556 1.5151 0.8667 

  (0.0742) (3.1192) (0.0176) (3.2390) (0.0086) (3.4024) (0.0056) (3.4564) 

 -0.5 1.8287 0.6384 1.5596 0.5007 1.5259 0.5024 1.5224 0.5039 

  (0.0978) (2.0582) (0.0222) (1.8934) (0.0110) (1.9576) (0.0074) (1.9814) 

 0.5 1.4477 0.8367 1.5442 0.5435 1.5209 0.5270 1.5130 0.5187 

  (0.1552) (0.3736) (0.0360) (0.0952) (0.0178) (0.0484) (0.0118) (0.0330) 

 1 1.8700 0.9089 1.6762 0.8528 1.6469 0.8792 1.6222 0.8958 

  (0.1946) (0.3340) (0.0378) (0.0484) (0.0180) (0.0208) (0.0120) (0.0108) 

 

Table 5: Bayes estimate and its Posterior Risks (in brackets) of θ and λ under LINEX for m=-1. 

  n = 10 n = 50 n = 100 n = 150 

                                            

0.5 -0.9 0.5571 -0.5089 0.5134 -0.7823 0.5063 -0.8402 0.5053 -0.8582 

  (0.0065) (0.1489) (0.0015) (0.0190) (0.0008) (0.0068) (0.0005) (0.0051) 

 -0.5 0.5969 -0.2484 0.5148 -0.4274 0.5095 -0.4709 0.5066 -0.4787 

  (0.0097) (0.1181) (0.0019) (0.0238) (0.0009) (0.0122) (0.0007) (0.0084) 

 0.5 0.5936 0.5913 0.5214 0.5006 0.5077 0.5158 0.5037 0.5189 

  (0.0178) (0.1257) (0.0032) (0.0252) (0.0015) (0.0124) (0.0011) (0.0081) 

 1 0.6088 0.8898 0.5615 0.8447 0.5511 0.8775 0.5422 0.8926 

  (0.0199) (0.1457) (0.0034) (0.0215) (0.0016) (0.0085) (0.0010) (0.0056) 

          

1.5 -0.9 1.7257 -0.5099 1.5408 -0.7768 1.5279 -0.8380 1.5166 -0.8571 

  (0.0539) (0.1568) (0.0128) (0.0207) (0.0065) (0.0076) (0.0043) (0.0044) 

 -0.5 1.8541 -0.2718 1.5652 -0.4222 1.5287 -0.4640 1.5244 -0.4786 

  (0.0743) (0.1189) (0.0167) (0.0238) (0.0083) (0.0124) (0.0057) (0.0082) 

 0.5 1.4711 0.7871 1.5530 0.5218 1.5253 0.5155 1.5160 0.5106 

  (0.1010) (0.1372) (0.0268) (0.0259) (0.0133) (0.0127) (0.0089) (0.0084) 

 1 1.9377 0.8797 1.6879 0.8509 1.6528 0.8771 1.6258 0.8956 

  (0.1650) (0.1378) (0.0306) (0.0223) (0.0149) (0.0083) (0.0096) (0.0052) 
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Table 6: Bayes estimate and its Posterior Risks (in brackets) of θ and λ under LINEX for m=+1. 

  n = 10 n = 50 n = 100 n = 150 

                                            

0.5 -0.9 0.5439 -0.8326 0.5105 -0.8221 0.5048 -0.8556 0.5043 -0.8683 

  (0.0067) (0.1748) (0.0014) (0.0208) (0.0007) (0.0086) (0.0005) (0.0050) 

 -0.5 0.5769 -0.5111 0.5109 -0.4780 0.5076 -0.4959 0.5054 -0.4956 

  (0.0103) (0.1446) (0.0020) (0.0268) (0.0010) (0.0128) (0.0005) (0.0085) 

 0.5 0.5580 0.3392 0.5151 0.4508 0.5047 0.4913 0.5016 0.5027 

  (0.0183) (0.1168) (0.0031) (0.0246) (0.0015) (0.0121) (0.0010) (0.0081) 

 1 0.5706 0.5998 0.5544 0.8042 0.5478 0.8614 0.5401 0.8816 

  (0.0183) (0.1443) (0.0037) (0.0190) (0.0017) (0.0076) (0.0011) (0.0054) 

          

1.5 -0.9 1.5979 -0.8596 1.5148 -0.8179 1.5146 -0.8537 1.5078 -0.8668 

  (0.0739) (0.1929) (0.0132) (0.0204) (0.0068) (0.0081) (0.0045) (0.0053) 

 -0.5 1.6818 -0.5329 1.5308 -0.4731 1.5118 -0.4894 1.5129 -0.4954 

  (0.0980) (0.1422) (0.0177) (0.0271) (0.0086) (0.0130) (0.0058) (0.0086) 

 0.5 1.2584 0.5387 1.4989 0.4716 1.4983 0.4907 1.4980 0.4939 

  (0.1117) (0.1112) (0.0273) (0.0243) (0.0137) (0.0121) (0.0091) (0.0083) 

 1 1.6124 0.6023 1.6274 0.8125 1.6234 0.8609 1.6068 0.8854 

  (0.1603) (0.1396) (0.0299) (0.0161) (0.0145) (0.0079) (0.0094) (0.0050) 

 

The summary of the findings from Tables 2-6 is as follows: 

i) The Bayes estimates for both θ and λ demonstrate convergence to their nominal values. 

ii) The rate parameter tends to be overestimated for both symmetric and asymmetric loss 

functions, while it underestimates the transmuted parameter when λ=1. 

iii) The MLEs for the rate parameter exhibit a decreasing trend, whereas the MLEs for the 

transmuted parameter display an irregular pattern (as shown in Table 2).  

iv) Variations are observed when comparing the Bayes estimates to the MLEs. Specifically, the 

Bayes estimates for the transmuted parameter when λ<0 under the PLF significantly exceed 

the MLEs. 

v) As the sample size (n) increases, the MSE for the rate and transmuted parameters of the MLE 

decreases. 

vi) Higher sample sizes (n) correspond to smaller posterior risks. 

vii) Under the SELF, the combination of θ=0.5 and λ=-0.9 yields the best posterior risk. 

viii) In the case of the PLF, posterior risk values exceed 1 for negative values of λ. 

ix) Notably, the magnitude of posterior risks consistently remains smaller when employing the 

LINEX (m=-1) compared to the SELF and PLF. 

Based on the findings presented above, it becomes evident that with an increase in sample size, the 

LINEX loss function with m=-1 consistently yields the smallest posterior risk when compared to the 

other two loss functions. 

5. Application   

In this section, the researchers illustrate the practical applicability of the QTE distribution by applying 

the estimation methods discussed earlier to real-world data. The dataset used in this analysis concerns 

the fatigue fracture duration of Kevlar 373/epoxy samples that were exposed to a sustained 90% stress 

level until failure occurred. This data-set was originally obtained from Abdul-Moniem and Seham 

(2015).The presented model is compared with Exponential Distribution (ED) and Generalized 

Exponential Distribution (GED). The researchers provide summary statistics and evaluate the 
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goodness of fit criteria for the data-set, as detailed in Owoloko et al. (2015). To ascertain the 

suitability of the Quadratic Transmuted Exponential distribution for modeling this data-set, a 

Kolmogorov-Smirnov (K-S) test is conducted. The computed K-S test statistic is reported as 0.0965, 

with a corresponding P-value of 0.4504. These results indicate that the data closely adheres to the 

QTED distribution at a 5% level of significance. Hence, QTED can be seen as a superior model for 

the given data. All the observations are presented in the following Table 7. The data summary is 

presented in Table 8. Table 9 illustrates the performance of the QTED. Table 10 showcases the 

Bayesian parameter estimates of θ and λ under the three loss functions, along with the corresponding 

posterior risk values and the MLEs.  

 

Table 7: Life of Fatigue Fracture of Kevlar 373/Epoxy. 

0.0251 0.0886 0.0891 0.2501 0.3113 0.3451 0.4763 0.5650 0.5671 0.6566 

0.6748 0.6751 0.6753 0.7696 0.8375 0.8391 0.8425 0.8645 0.8851 0.9113 

0.9120 0.9836 1.0483 1.0596 1.0773 1.1733 1.2570 1.2766 1.2985 1.3211 

1.3503 1.3551 1.4595 1.4880 1.5728 1.5733 1.7083 1.7263 1.7460 1.7630 

1.7746 1.8275 1.8375 1.8503 1.8808 1.8878 1.8881 1.9316 1.9558 2.0048 

2.0408 2.0903 2.1093 2.1330 2.2100 2.2460 2.2878 2.3203 2.3470 2.3513 

2.4951 2.5260 2.9911 3.0256 3.2678 3.4045 3.4846 3.7433 3.7455 3.9143 

4.8073 5.4005 5.4435 5.5295 6.5541 9.0960     

 

Table 8: Summary of the Data on Life of Fatigue Fracture of Kevlar 373/epoxy. 

Min. Q1 Q2 Q3 Max Mean Variance Skewness Kurtosis 

0.0251 0.9048 1.7360 2.2960 9.0960 1.9590 2.4774 1.9406 8.1608 

Table 9: Performance of the QTED for the Fatigue Fracture of Kevlar 373/epoxy. 

Distribution Parameters Estimates LogLik. AIC BIC KS P-value 

QTED    0.7266 -121.5166 247.0331 251.6947 0.0965 0.4504 

    -0.8487      

ED    0.5104 -127.1143 256.2287 258.5593 0.1663 0.0263 

GED    1.7095 -122.2436 248.4872 253.1487 0.0942 0.4803 

    0.7028      

Table 10: Maximum Likelihood and Bayesian Estimation under the Three Loss Functions and its 

Posterior Risk. 

Parameter MLE SELF PLF LINEX(m=-1) LINEX(m=+1) 

θ 0.7266 0.7346 

(0.0041) 

0.7374 

(0.0056) 

0.7366 

(0.0020) 

0.7325 

(0.0021) 

λ -0.8487 -0.7895 

(0.0119) 

0.7970 

(3.1730) 

-0.7840 

(0.0055) 

-0.7959 

(0.0064) 

 

In evaluating the performance of these loss functions, it becomes apparent that the LINEX (m=-1) 

consistently produces the smallest posterior risks compared to all the other loss functions under 
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consideration. Employing the Bayes Estimate within the LINEX (m=-1) loss function, Fig.1 illustrates 

the Bayes’ reliability pattern, while Fig.2 depicts the Bayes’ hazard rate function. The Bayes’ estimate 

of MTTF for the fatigue fracture life of Kevlar 373/epoxy is established to be 1.8898. This signifies 

that the Bayes’ estimate of average lifespan of the Kevlar 373/epoxy material is 1.8898 units of time. 

Consequently, a protocol is devised to replace or renew the Kevlar 373/epoxy material every 1.8898 

units of time, ensuring continuity before the current one reaches the point of failure. 

 

6. Conclusion 

In response to the existing gap in understanding the performance of parameters within the Quadratic 

Transmuted Exponential Distribution while assuming non-informative priors, this research endeavors 

to address this gap comprehensively. The study encompasses an exploration of various symmetric and 

asymmetric loss functions to gain insights into the characteristics of the assumed distribution. The 

Lindley’s approximation method is implemented to obtain Bayes estimators, while MLEs are derived 

using the Newton-Raphson method in RStudio. The selection of an appropriate loss function is a focal 

point, and to make this choice, an extensive Monte Carlo simulation study is conducted, 

encompassing diverse sample sizes and parameter values. Additionally, the research includes a 

practical example featuring a set of real-world values. A detailed examination of Tables 2 through 6 

reveals that the Bayesian estimators consistently exhibit the property of consistency, wherein the 

Bayes estimates converge towards the nominal values. 

Furthermore, it is observed that an increase in sample size corresponds to a decrease in posterior risks. 

The LINEX loss function consistently yields the minimum posterior risks among the various loss 

functions. Based on the minimum posterior risk obtained from the Bayes’ estimates, the study delves 

into the Bayes’ estimate of lifespan analysis of Kevlar 373/epoxy material. This analysis signifies that 

the Bayes’ estimate of average lifespan of the Kevlar 373/epoxy material amounts to 1.8898 units of 

time. Consequently, a protocol is developed to replace or renew the Kevlar 373/epoxy material every 

1.8898 units of time, ensuring continuity before the current material reaches its point of failure. 
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