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   ABSTRACT  

The paper provides the Bayes analysis of the Hadwiger fertility model using the Gaussian 

copula prior to quantifying the information available in terms of marginal probability into a 

comprehensive joint probability framework for the parameters of the considered Hadwiger 

model. The resulting posterior, being analytically intractable, is analyzed using Markov chain 

Monte Carlo simulation, in particular, the Metropolis algorithm. The findings are supported by 

a real data example of reported age-specific fertility rate data. The approach is useful in the 

sense that it allows for an apt representation and analysis of the relationship between the priors. 

1. Introduction 

Modelling the fertility curve has always drawn the attention of demographers. It is both interesting 

and challenging because of the varying nature of age-specific fertility rate (ASFR) patterns in 

different countries over time. As far as the study of fertility is concerned, numerous models with a 

number of parameters are proposed in the literature to depict the fertility curve. One of the earliest 

ASFR models proposed by Gilje (1969) and Hoem et al. (1981) is based on the Hadwiger 

function, which can be written as 
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where   refers to the age of a woman at the time of birth of her child, and      and   are the three 

parameters associated with the model. In (1),   is used to denote the parameter vector, that is,   = 

(     ). 

Chandola et al. (1999) studied the demographic interpretation of these parameters. They concluded 

that the parameter   is      times the total fertility rate (TFR),   is strongly associated with the 

maximum ASFR whereas   is related to the mean age of motherhood of the specified country. The 

following year Osona and Kohler (2000), while commenting on the same distribution, gave the 

relationship between the parameters of the distribution. The variance of the fertility structure was 

found to give a relation between the two parameters,   and  , by means of the equation. 

   
 

 

  

  
  (2) 

Furthermore, the authors also derived the formula for the parameter   by relating it to the TFR of the 

age-specific fertility schedules as 
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TFR       (3) 

Obviously, the parameter   has the same relation with TFR as observed by Chandola et al. (1999). 

Chandola et al. (1999), in their paper studied the inferential aspects of the model from a classical 

perspective. The same model was later taken by Mishra and Upadhyay (2019), but the authors were 

mostly concerned with the Bayesian developments based on Markov chain Monte Carlo (MCMC) 

simulation-based approaches, particularly using the Gibbs sampler and the Metropolis algorithm (see 

Smith and Roberts (1993), Upadhyay et al. (2001)) as the resulting posterior was intractable 

analytically. The key idea of these simulation-based algorithms involves the construction of a Markov 

chain such that the chain's stationary distribution corresponds to the posterior of interest. The 

corresponding samples generated converge in distribution to the random sample from the posterior 

distribution of interest. 

An important drawback of the study performed by Mishra and Upadhyay (2019) was that all three 

parameters were treated a priori independently while formulating the necessary Bayesian modelling. 

The assumption of a priori independence, however, may not be justified in the light of relationships 

between the parameters given by Osona and Kohler (2000) (see also (2)-(3)). The present paper 

attempts to overcome this drawback by considering the parameters to be dependent on each other and 

reflecting this dependence by defining an appropriate a priori distribution. The possible solution 

involves considering the joint prior of the parameters, but defining the joint prior requires the 

knowledge of conditional probability structuring, a situation that is generally difficult to anticipate by 

the demographers. The task becomes even more difficult if one has more than two parameters. Among 

various other possibilities to reflect the dependence structure between the parameters, one can 

consider copula-based priors, the simplest and the foremost being the Gaussian copula. 

The plan of the paper is given below. The next section briefly discusses the copula model to be 

considered as the prior distribution for the concerned model parameters. Section 2 discusses the 

Bayesian model formulation, outlining the prior specification and then specifying the posterior 

distribution up to proportionality. A brief comment is also given on implementing the Metropolis 

algorithm for drawing the relevant sample-based inferences from the posterior specified up to 

proportionality only. Model compatibility study is discussed briefly in Section 3. A numerical 

illustration of the proposed study is given in Section 4, based on a real data set of women from 

Denmark. Finally, a brief conclusion is given in the last section. 

1.1 The Copula 

 Quite often, while working with multidimensional models, it is difficult to arrive at their joint 

probability distributions given the marginal distributions. Copula comes into play in such cases and 

according to Nelsen (2007), it is a term that describes the functions that bond the marginal 

distributions to give the joint distribution. Copula can thus be perceived as a function used for 

coupling the marginal distributions. Statistically, these are distribution functions having marginals as 

Uniform (0,1). It is a linking function that takes into account the dependence measure having scale 

free approach. Sklar (1996), Hoeffding (1941), Kimeldori and Sampson (1975) and Deheuvels (1978), 

among others, independently studied copula in different forms. However, Sklar’s theorem (1959) (see 

also Schweizer and Sklar (2011)) could be regarded as a milestone in the development of the 

statistical significance of copulas. As per the theorem, given a joint distribution function, there exists 

a copula such that for all the random variables           , we have 
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                                                                   (4) 

where      s are the marginal distribution functions and   is the joint distribution function. The 

converse of this theorem provides the basis for developing the joint priors. It states that given a copula 

C, the known marginal distribution functions        will lead us to the joint distribution   using (4). 

In this paper, we have used the inversion method (see Nelsen (2007)) to find the copula as 

                                            
         

           
          (5)                         

Geometric and algebraic methods are also popular, but in our case, the inversion method of copula 

generation is used since it allows one to get copulas with arbitrary margins. Gaussian copula is 

considered one of the best inversion copulas among others (see also Lin and Li (2014)). 

Copulas are dynamic in that they model how the variables are related to each other, even in the case of 

a complex structural dependence, giving us the joint distributions without assuming anything about 

the marginal. Using copula as a prior has garnered increasing interest among researchers in recent 

years. Sharma and Das (2017) in their study have used the Gaussian as well as the t-copula priors with 

Lasso to conclude that in the case of regularization and variable selection, the two priors provided an 

improvement over the elastic net and g-priors. Elfadaly and Garthwaite (2017) compared the Dirichlet 

prior and the Gaussian copula prior in the case of multinomial model and observed that the Gaussian 

copula outperforms the former. Klein and Smith (2021) used the marginally calibrated copula prior in 

case of non-Gaussian responses. 

2. Bayesian Model Formulation 

It is assumed that each conception results in only one live birth and that the occurrence of birth is 

treated as success. Thus, births can be modelled as binomially distributed (see, Mishra and Upadhyay 

(2019)). Here, the probability of success will be given by the considered fertility graduating function. 

Next, it is assumed that the level of fecundity among each woman is uniform and it is not affected by 

any external forces. Thus, we can write the probability of birth at age  , that is,   , given the 

parameter vector   as 

                                   
  
  
          

  
           

          (6)                               

where    is the total number of women at age   and    is the number of births to    women. 

Furthermore, the age of child-bearing lies in the range of    to    years. Now, one can write the 

likelihood function as 

                                 
  
   

             
  
           

           (7) 

where                    is the vector showing births to women at different child-bearing ages. 

Now, substituting        from (1) in (7), one can get the likelihood function corresponding to 

Hadwiger model and the same can be written as   
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2.1 The Prior and the Posterior Distribution 

As mentioned, this paper considers the use of Gaussian copula as the prior density. Let us have a 

random vector consisting of k random variables defined as               , then the Gaussian 

copula at             , with        indicating a cumulative distribution can be given as 

                             
            

              
               (9) 

where   denotes the cumulative distribution function (cdf) of a k-variate normal density having zero 

mean and unit variance and   is the univariate marginal cdf of the standard normal variate. To use the 

Gaussian copula as the prior density, one has to procure the density function from the cdf. Thus, 

differentiating the copula given in (9) with respect to   , one gets 

                              
   
 
       

       
    

  

 
  
               (10) 

where   
                

              
           ,        is the density function 

corresponding to    and    is the identity matrix of order k. The correlation matrix R should be 

positive definite given the distribution as multivariate normal. 

For the present study, since the parameter vector   has three components (     ), one can consider 

    and, correspondingly,           and     . Therefore, the joint prior for   becomes 

                                
   
 
       

       
    

  

 
  
                (11) 

It may be noted that some of the symbols on the right-hand side of (11) are retained from (10) for 

notational convenience. Further,        is proportional to a constant as the marginal distribution of 

the parameters is taken to be uniform with limits depending on their respective demographic 

interpretations. As such, since   is      times the TFR, the marginal density for   is taken to be 

      . Similarly, given that   is proportional to the height of the ASFR curve,   is assumed to 

follow       . Finally, since   is the mean age of motherhood, the density of   is assumed to follow 

        . The correlation matrix   will be a     matrix and 

  
                

            
            where   

   are as described in the previous 

paragraph. Also,         in the previous description denotes the uniform density in the range       . 

Once the prior distribution is specified, the next issue is the specification of prior hyperparameters. In 

this paper, we have instead considered a two-stage hierarchical Bayes approach. The prior for the first 

stage consists of the joint prior for the parameter vector   and the same for the second stage is 

introduced because of the correlation matrix  . Moreover, it is known that the correlation coefficient 

lies between    and   and no other information is available a priori. It is, therefore, appropriate to 

consider a second stage prior for     as the uniform density      between the range         and 

      . Thus, considering the above a priori structure, one can obtain the posterior distribution up to 

proportionality as 
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                                                                      (12) 

Combining (8), (11) and (12), the posterior distribution up to proportionality can be written as, 

               
  
   

      
  

 
  
 

 
 
     

        
 

 
 
 

 
     

  

    

     
  

 
  
 

 
 
     

        
 

 
 
 

 
     

       

    

 
 

       
    

  

 
  
                         

 
           

 (13) 

where                   denotes an indicator function that takes value unity if     belongs to the interval 

           . The above posterior is analytically intractable; thus, working with the same appears 

difficult. As an option, a sample-based approach may be used to get the posterior samples, hence the 

sample-based posterior inferences. One of the most widely used techniques for the generation of 

samples is the Metropolis algorithm (see, for example, Chib and Greenberg (1995) and Upadhyay et 

al. (2001) for more details and related diagnostic issues). Given that        is the posterior 

distribution specified up to proportionality. One needs to generate samples from the same. We take a 

symmetric Markov kernel         given that   is the initial value and    is the proposed realisation 

to be generated. The next step consists of accepting    with probability   equals to 

                                                      
       

      
      (14) 

Now, the chain moves from   to    with probability  , otherwise it stays at  . In the present study, 

we have used            as the Markovian kernel for simulating the chain where    is a scaling 

constant often taken between 0.5 and 1.0 and            denotes the multivariate normal 

distribution with mean vector   and variance-covariance matrix    . For the initial values of   and  , 

one can consider, for example, maximum likelihood (ML) estimates and the corresponding Hessian-

based approximation. 

3. Model Compatibility 

Once a model is proposed for the data in hand, it is essential to check if it is compatible with the data. 

A compatible model, of course, provides reasonable estimates and appears justified for the entertained 

data analysis. There are a number of techniques available within the Bayesian paradigm to assess the 

appropriateness of a model. One can use, for instance, the visual representations based on model- and 

data-based characteristics and check if the two characteristics appear to be similar when plotted on the 

same scale. Although informal, this similarity provides an impression that the entertained model can 

be appropriately considered for the data in hand. This paper considers the visual characterization of 

the proposed model to examine its suitability. 
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Figure 1: Trace plots for posterior samples of     and   exhibiting very good convergence in all the 

cases. 

4. Numerical Illustration 

For the numerical illustration of the proposed methodology, the paper considers a data set on ASFR 

for the year 2012 of women from Denmark in the child bearing age group 15 to 49 years. The data can 

be found in the repository of the human fertility collection database by the Max Planck Institute for 

Demographic Research (Germany) and Vienna Institute of Demography (Austria). The complete data 

set is not shown in the paper, though one can download it from the web page www.fertilitydata.org. 

The given data on ASFR were finally multiplied by     in order to provide the total number of births 

per     women. Also, the TFR was calculated from the data and the value was found to be 1.73. 

Table 1: Estimated posterior characteristics of the parameters of Hadwiger density based on 

simulated posterior sample. 

 

Parameters ML 

Estimate 

Estimated posterior characteristics 

Mean Median Mode 0.95 HPDI 

a 0.981 0.983 0.982 0.981 (0.958,1.007) 

b 4.071 4.069 4.070 4.071 (3.982,4.151) 

c 30.375 30.371 30.372 30.386 (30.248,30.551) 

As discussed in Section 2, the Metropolis algorithm is used to generate samples from the posterior 

distribution given in (13). As mentioned, ML estimates of the parameters and the corresponding 

Hessian-based approximation were used as the initial values for the multivariate normal kernel. A 

value of     for the scaling constant    appeared to provide a good acceptance rate of the Metropolis 

steps. 

https://d.docs.live.net/4398212ea2504016/Desktop/www.fertilitydata.org
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Figure 2: Histogram showing the marginal posterior density estimates of parameters. It is evident 

from the plot that all the marginals are symmetric. 

After getting the convergence with the burn-in period of nearly    thousand iterations, a sample of 

size     was taken. The sample observations were chosen with a gap of    to minimize serial 

correlation among the generating variates. The trace plot of the Metropolis output for various 

parameters is shown in Figure 1. Using the finally picked up samples of size    . The estimated 

posterior mean, median, and mode of the parameters were obtained, and they are shown in Table 1. 

The table also provides estimated highest posterior density interval with coverage probability      

(0.95 HPrDI). These values can be used to see the concentration of the marginal posteriors towards 

the estimated central tendency measures. 

It is obvious from Table 1 that the estimated posterior mode of the parameter   is      , a value 

which is approximately equal to      times TFR. Also, the parameter   comes out to be      , which 

is approximately equal to the mean age of fertility (see also (3)). Obviously, these estimated values 

are in accordance with the interpretation of the model parameters given in Section 1. 

The estimated marginal posteriors in the form of histograms are shown in Figure 2. These figures are 

shown to get an overall idea of the marginal posterior densities. Say, for instance, one can 

immediately conclude from the Figure 2 that the marginal posterior densities are more or less 

symmetric for all the three parameters. 
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Figure 3: Model based predicted and observed data based ASFR plots. 0.95 HPrDI is also shown. 

Finally, Figure 3 provides the visual representation showing the compatibility of the model with the 

real data. The bold continuous line in the figure represents the real data based ASFR values, whereas 

the large dashed line depicts the model based ASFR values. The dashed and dotted lines are used to 

represent the plots corresponding to the highest predictive density interval with coverage probability 

     (0.95 HPrDI). It can be seen that the data based and the model based plots show perfect 

compatibility as discussed in Section 3 and, therefore, it can be concluded that the entertained 

Hadwiger fertility model appears to be an apt candidate for the data in hand. 

5. Conclusion 

This study aims to test the effectiveness of the copula model as a prior in the Bayesian framework. To 

accomplish this, Gaussian copula density is employed as a joint prior for the parameters of the 

Hadwiger fertility model, allowing us to accurately represent the joint prior density considering the 

marginal densities of the parameters. It has been discovered that the model under consideration 

successfully explains the fertility pattern observed in Denmark. Also, the compatibility study confirms 

the appropriateness of the model with the data in hand, where appropriateness is judged based on both 

the prior and the likelihood. As such, the considered copula prior, which has an inherent dependency 

among the parameters, is recommended. 
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