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ABSTRACT  

The paper deals with the cost-benefit analysis of a system composed of two non-identical units 

A and B arranged in series configuration with an identical cold standby unit corresponding to 

unit-A. System failure occurs when either unit-A (including its redundancy) or unit-B are in 

total failure mode. Failure and repair times of the units are independent random variables of 

discrete nature and follow geometric distributions with different parameters. The various 

system effectiveness measures are obtained using the regenerative point technique
1
. The 

reliability of software can be assessed by analyzing the pattern of failure occurrence at the 

software testing stage. To assess the reliability of Software, the Rayleigh Class software 

reliability growth model is proposed by assuming the Binomial pattern of failure occurrence. 

Also, the Bayes estimates for the number of inherent failures and the scale parameter are 

proposed using the non-informative, inverted gamma prior, respectively. The performance of 

proposed Bayes estimators are compared with corresponding MLEs based on relative 

efficiencies obtained by the Monte Carlo simulation technique for studying the performance of 

both proposed estimators. 

1. Introduction 

Today, computer and mobile applications have conquered the routine life of all human beings as well 

as various sectors of sciences and technology, engineering, humanities, and so on. Moreover, various 

software applications are used in the medical industry, healthcare industry, aviation industry, banking, 

government sectors, etc. These applications are the collective result of the many complex sequences 

of codes.  Hence, there are high chances of induction of faults which leads to occurrence of failures or 

inefficient performance. These failures or inefficient software performance may be due to many 

reasons, such as errors in memory, language-specific errors, calling third-party libraries, standard 

libraries, etc. The operational effects of such failures may result in system breakdown and unexpected 

hazardous results. Therefore, many systems of the above sectors need reliable operations of 

applications/software. Therefore, the assessment and quantification of the performance of the software 

are very essential. One of the measures of the performance of the software is its reliability. In other 

words, it becomes essential to develop reliable software which satisfies the requirements of users or 

systems. 

In this paper, the focus is on the quantification of reliability of software considering Binomial type 

failure occurrence having one parameter Rayleigh class failure intensity. The failure intensity is 

assumed to be a Rayleigh distribution involving parameters, such as the total number of inherent 

failures present in the software, i.e.,   and the scale parameter, i.e.   .  Many researchers use the 

Rayleigh Class failure intensity for quantifying the reliability of software c.f.  Vouk (1992), Yamada 

et al. (1986), Kan (2002), Norden (1963), Putnam L. H. (1978). Schick and Wolverton  (1973, 1978), 

Singh and Andure (2008), Singh and Kale (2016), Singh et al. (2016, 2022a, 2022b, 2023) etc. 
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Suppose that no information or very less information is available about the parameter    and it is 

likely that    will be having an inverted gamma distribution as a priori. Here, the Bayes estimators are 

obtained for the Binomial type Rayleigh Class Software Reliability Growth Model considering non-

informative and inverted gamma priors for the parameters    and    respectively (see Musa et al. 

(1984), Singh and Andure (2008), and Singh and Kale (2016)). The performance of proposed Bayes 

estimators is studied by comparing them with the corresponding maximum likelihood estimators. It is 

seen that the Bayesian estimators of    and     perform better than their corresponding MLEs for the 

small sample size. 

2. Characterization of Model 

Assumptions: 

i) Failure occurrence process follows the Binomial Type 

ii) The fault that causes failure will be removed immediately. 

iii) There are finite inherent faults present in the software. 

iv) Each failure occurs independently and randomly in time according to the constant per-fault 

hazard rate. 

Let   be the non-negative, real number, random variable representing time to failure with realization   

then Rayleigh Class failure intensity             and expected number of failures at time    i.e. 

          is given by 
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If      is a random variable representing failures experienced in software up to time   then the 

probability of getting          failures is given as follows.              
 

    

  
 

 
     

   
 
 
 

   
 

 
     

   
 
 
      

,              (2.3)     

This is known as the Binomial type model (c.f. Musa et al. (1984)) 

3. Maximum Likelihood Estimators 

Suppose software is executed up to    time and if            
     be failure times of    failures 

experienced up to execution time   . In general, using      and       the likelihood function is  

                     
                   

  
     

After substituting the values of      and       and doing mathematical simplification, the above 

likelihood function becomes 

           
          

   
 
          

        
  
            

  
  

    (3.1) 

where, 

  
            

  
    is falling factorials (cf. Gradshteyn and Ryzhik (1994), Graham  

et al. (1994) and Osgood and Wu (2009)). 
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The maximum likelihood estimators of parameters    and    can be obtained by differentiating (3.1) 

with respect to    and    and equating with zero; then, after simplification, we get 

                
            

     (3.2) 

and 

       
                 

      
   (3.3) 

The MLEs      and       can be obtained by solving the above equations by using any standard 

iteration method. 

4. Priors 

Let us assume that the experimenter has very little information about the parameter    or the 

information about the parameter    is not available up to the software testing to the experimenter. 

Hence the non-informative prior to the number of failures    will be a correct selection, i.e. 

       
  

                   
                  

  

Suppose the prior information about the scale parameter    available to the researcher, and it is 

guessed to follow an inverted gamma distribution. Then, the prior for    can be selected as  

           
         

  
                   

                                     
    

Assuming that    and    are independent, the joint prior distribution of    and    can be written by 

multiplying both priors as 

             
         

  
  

                          
                                     

  (4.1) 

where   and   are prior constants of   . 

5. Bayesian Estimation 

Joint Posterior of    and   : 

The joint posterior of    and   given   is obtained with the help of equations (3.1) and (4.1) by 

applying Bayes theorem, which comes out as 

                                    
  

  
        

  
    

   (5.1)  

,       ,       and         

The constant of proportionality   is defined as  

         

     
       

  
      

  
   
       

       

where 

        ,  

            ,  

            
   

,        

          
  , and  

               

Marginal of    and   : 

The marginal posterior distributions of the parameters    and    are obtained by integrating other 

parameters over the whole range and denoted by         and         respectively. Thus, 

              
    

                     
   

      (5.2) 

     ,       and         
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and 

                       
  

  
     

                 (5.3)

        and          

where 

                    

     
                  

        
            

     

Proposed Bayes Estimates of    and   : 

The proposed Bayes estimator      is the posterior mean and can be obtained from (5.2), which is  
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where 
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The proposed Bayes estimator      is the posterior mean and can be obtained from (5.3) as 
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where 

         

     
       

  
      

  
   
       

       
  

, and 

            

6. Result and Discussion 

The Bayes estimators are proposed by considering inverted gamma prior to scale parameter    and 

non-informative prior for parameter    in section 5.3 i.e.      and      and proposed estimators are 

compared with corresponding MLEs obtained in section 3.  The proposed Bayes estimators are 

depending upon the values of prior constants  ,    and execution time   . Therefore, the performances 

of proposed Bayes estimators are studied by taking different values of prior constants  ,   and 

execution time    and different hypothetical true values of parameters    and   . This study is carried 

out by evaluating the risk efficiencies for a sample generated up to    using the Inverse 

Transformation method of sample generation. The failure times   ,           , obtained by 

generating a random sample up to  a fixed execution time   .  The risk efficiencies were evaluated by 

repeating the process 103 times, generating samples using the Monte Carlo Simulation technique. The 

performance of proposed Bayes estimators is summarized and presented in the form of graphs G-1 to 

G-6 of risk efficiencies     and     obtained by taking                 ,            ,    
       ,              and                 . 
The region in which Bayes estimators perform better than MLEs is obtained from Graphs G-1 to G-6 

and summarized in Table T-1. 

       Region for efficient      Region for efficient      

4.0 10 5     and        and    

6.0 10 5     and        and    

8.0 10 5     and        and    

6.0 1 5     and        and        

6.0 20 5     and        and    

6.0 10 10     and        and    

6.0 10 15     and        and        

Table (T- 1): Behavior of      and      for different values of Execution Time and hyperparameters. 
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7. Conclusion 

Both the proposed Bayes estimators of    and   i.e.      and      can be preferred over corresponding 

MLEs if the uniform prior is suitable for    and inverted gamma prior for   . For the large execution 

time   , the proposed estimator      performs well for larger values of    and smaller values of   . 

Similarly,      performs better than MLE for all values of    and    except a few cases. 
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Graph (G-1): Risk Efficiencies of      and      , for               ,           ,     ,     and        . 

 

 

Graph (G-2): Risk Efficiencies of      and      , for               ,           ,     ,     and        . 

 
Graph (G-3): Risk Efficiencies of      and     , for               ,           ,     ,     and        . 
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Graph (G-4): Risk Efficiencies of      and      , for               ,           ,      ,     and        

 
Graph (G-5): Risk Efficiencies of      and      , for               ,           ,      ,     and     . 

 
Graph (G-6): Risk Efficiencies of      and      , for               ,           ,      ,      and     . 
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