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   ABSTRACT  

The present research aims to discuss the problem of non-response in estimating the population 

mean under stratified systematic sampling utilizing the information on a single auxiliary 

variable. The notion of calibration has been deemed to modify the non-response rates and also 

the stratum weights so that the resulting calibration estimators would provide more précised 

estimates. The expressions for the MSE of the proposed calibration estimators have been 

derived using the Taylor linearization technique. An empirical study based on simulated and 

real data has also been carried out to check the performance of the proposed calibration 

estimators. The study reveals that the proposed calibration estimators outperform the existing 

ones. 

1. Introduction 

Once the sub-populations (sub-groups) within the whole population vary significantly in a statistical 

survey, it is useful to select a sample from each sub-population independently. Stratification is the 

process of dividing the whole population into homogeneous subgroups before sampling. Simple 

random sampling or systematic sampling can be applied to select the sample from each stratum. This 

mechanism certainly improves the representativeness of the sample by reducing sampling error. 

Systematic sampling is the simplest technique to select the required number of units with a single 

random start. However, many authors have used simple random sampling to select units from each 

stratum. Clement (2017) used systematic sampling for this purpose and proposed a calibration ratio-

type estimator under stratified systematic sampling. 

Nowadays, non-response is a big issue in all types of statistical surveys. There are many reasons for 

non-response, such as not being at home, being unable to answer the question, lack of interest, etc. 

Hansen and Hurwitz (1946) were the first to discuss the problem of non-response in mail surveys. The 

auxiliary information is usually used to compensate for the efficiency loss due to non-response. Many 

authors have considered the problem of non-response in estimating the parameters. Singh and Kumar 

(2010) have estimated the population mean in non-response presence using a two-phase sampling 

scheme. Kumar and Bhougal (2011) have suggested the estimators of the population mean using 

auxiliary information in the presence of non-response. Khare et al. (2012) suggested chain-type 

estimators for ratio of two population means using auxiliary characters in the presence of non-

response. Chaudhary et al. (2012) proposed a general family of estimators for estimating the 

population mean in systematic sampling using auxiliary information under non-response. Raman et al. 

                                                           
Corresponding author:  Manoj K. Chaudhary, Department of Statistics, Institute of Science, Banaras Hindu University, 

Varanasi, U.P.-221005, India. Email: mk15@bhu.ac.in 
2Department of Mathematics, Faculty of Applied and Basic Sciences, SGT University, Gurugram, Haryana-122505, India.  



Manoj K. Chaudhary and Tulika Dutta 

2 

 

(2016) suggested calibration approach-based product-type estimators of finite population total in 

single and two-phase sampling under non-response. Gautam et al. (2020) proposed a calibration 

estimator of the population mean in the presence of non-response. Recently, Chaudhary and Dutta 

(2023) have developed some calibration-based improvements in estimating the mean of a stratified 

population with a scrambled response on the second call under non-response. 

In the subsequent sections, some improved calibration estimators of the population mean in stratified 

systematic sampling utilizing the information on a single auxiliary variable under non-response have 

been proposed for the first time. The expressions for the proposed calibration estimators' mean square 

error (MSE) have been derived using the Taylor linearization technique. A comparison of the 

proposed calibration estimators with the usual estimator has been presented by conducting an 

empirical study based on simulated and real data. 

2. Sampling Strategy and Estimation Procedure 

Consider a finite population of N  distinct and identifiable units which consists of L  strata with lN  

units in the 
thl  stratum from which a systematic random sample of size ln is selected  1,2,...,l L . 

In order to draw the systematic sample, only the first unit is selected at random from each stratum, the 

rest being automatically selected by choosing lk (sampling interval). It is further mentioned that 

lll knN  . Let Y  and X be the study and auxiliary variables with respective population means 

1

( )
L

ll

l

Y w Y


  and
1

( )
L

ll

l

X w X


 . Here, lY  and lX  are respectively the population means under 

study and auxiliary variables for the 
thl  stratum; ( )l

l

N
w

N
  is the weight for the 

thl  stratum. Let lijy  

and lijx  be the observations on the 
thj  unit in the 

thi  systematic sample for the 
thl  stratum under 

study variable Y  and auxiliary variable X , respectively  1, 2,..., ; 1, 2,...,l li k j n  . Let us 

assume that the auxiliary variable X  is free from the non-response while the study variable Y is 

suffering from the non-response. It is further assumed that out of ln units of a systematic sample, 1ln

units respond, and 2ln units do not respond on Y . Now, by adopting the technique given by Hansen 

and Hurwitz (1946), we select a sub-sample of size 2lh from 2ln  non-responding units 

2
2 ; 1l

l l

l

n
h g

g

 
  

 
and collect the information from all the 2lh  units. 

The Hansen and Hurwitz (1946) estimator for the population total under stratified systematic 

sampling is given as 

1 2

*

1

[ ]
l in hL

lij lij lij lij

l j j

T d y d y


     (2.1) 

where, lijd and 
*

lijd  are the design weights.  

Here, we use systematic sampling to draw a sample from each stratum. Hence, the inclusion 

probabilities are defined as 
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l

lij
k

1
  and 

2

2
| 2

l

l
nlij

n

h
l
 . 

Using these values of the inclusion probabilities, the design weights become 

l

lij

lij kd 



1

 and 

2

* 2

| 2

1

l

l
lij l

lij lij n l

n
d k

h
 
 

. 

Putting above values of the design weights into (2.1), the estimator of the population total becomes 

*

1 21 2

1

[ { }]
L

l l nl nlnl hl

l

T k n w y w y


   

where 1
1

l
nl

l

n
w

n
  and 2

2
l

nl

l

n
w

n
 . 1nly  and 2hly  are the means based on 

1ln responding units and 
2lh  

non-responding units under study variable. 

Now, Hansen and Hurwitz's (1946) estimator of the population mean Y  under stratified systematic 

sampling is defined as  

*

1 21 2

1

[ ]
L

l nl nlnl hl

l

y w w y w y


   (2.2) 

The expression for the variance of the estimator 
*

y  is given by 

*
2 2 2

2 2

1

( 1) ( 1)
( ) [ (1 ( 1) ) ]

L
l l

l l ly ly l ly

l l l l

N g
V y w n S W S

N n n




 
     (2.3) 

where 
2

( )( )

( )

l llij lkj

ly
llij

E y Y y Y

E y Y


   
 

  

 is the intra-class correlation coefficient between the units of the 

same systematic sample in the 
thl  stratum under study variable. lY is the population mean of the 

study variable in the 
thl  stratum. 

2

lyS  and 
2

2lyS are respectively the population mean squares of the 

entire group and non-response group in the 
thl  stratum under the study variable. 

2lW  is the population 

non-response rate in the 
thl  stratum.  

3. Proposed Calibration Estimators 

We now propose a new calibration estimator of the population total 
1 1 1

( )
l lk nL

lij

l i j

T y
  

 in stratified 

systematic sampling under non-response as follows: 

1 2

*

1

[ ]
l ln hL

cal lij lij lij lij

l j j

T d y y


    
 (3.1) 

where 
*

lij  is the calibration weight such that it minimizes the chi-square distance 

2
* * 2

*

( )lh
lij lij

j lij lij

d

q d

 


 
subject to the calibration constraints 
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2 2

*
l lh n

lij lij lij lij

j j

x d x  
 (3.2) 

2 2

* *
l lh h

lij lij

j j

d  
 (3.3) 

where lijq is the tuning parameter. 

Let us define the Lagrange function as 

2 2 2 2 2
* * 2

* * *

1 1 2*

( )
2 ( ) 2 ( )

l l l l lh h n h h
lij lij

lij lij lij lij lij lij

j j j j jlij lij

d
x d x d

q d
 

 
           

 

where 
1  and 

2  are the Lagrange multipliers.      

Differentiating 
1  with respect to 

*

lij and equating the derivative to zero, we get 

)( 21

***   lijlijlijlijlij xdqd  (3.4) 

Putting the value of 
*

lij from (3.4) into (3.2) and (3.3), we respectively get 

2 2

* *

1 2[ ( )]
l lh n

lij lij lij lij lij lij lij

j j

d q d x x d x    
 and 

2 2

* * *

1 2[ ( )]
l lh h

lij lij lij lij lij

j j

d q d x d    
. 

Now, we find the values of 1  and 2 by solving the following matrix: 

2 2

2 2

2 2

* 2 *

*

1

2* *
0

l l

l l

l l

h h

n h
lij lij lij lij lij lij

j j lij lij lij lij

j j
h h

lij lij lij lij lij

j j

q d x q d x
d x d x

q d x q d





 
  

                
  

 
 

 
 

Thus, the values of 1  and 2 are respectively given as 

2 2 2

* *

1

( )[ ]
l l lh n h

lij lij lij lij lij lij

j j j

q d d x d x

D






  

and 

2 2 2

* *

2

( )[ ]
l l lh n h

lij lij lij lij lij lij lij

j j j

q d x d x d x

D


 



  

 

where    

2 2 2

* 2 * * 2( )( ) ( )
l l lh h h

lij lij lij lij lij lij lij lij

j j j

D q d x q d q d x   
 

Putting the values of 1  and 2 into (3.4), we find the optimum value of 
*

lij  and then putting the 

optimum value of 
*

lij  into (3.1), the calibration estimator of the population total becomes 

1 2 2 2

* *

1

[ ( )]
l l l ln h n hL

cal lij lij lij lij lij lij lij lij

l j j j j

A
T d y d y d x d x

D

       
 (3.5) 

where 
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2 2 2 2

* * * *( )( ) ( )( )
l l l lh h h h

lij lij lij lij lij lij lij lij lij lij lij lij

j j j j

A q d x y q d q d y q d x    
.  

Now, we assume 1lijq ,l i and j . Thus, the calibration estimator of the population total T  is 

reduced to 

2 21 2 2 2 21 2

1

[ { ( )}]
L

nl hlcal l l nl nl hl nl nlnl hl

l

T k n w y w y w x w x


   
 

where  

2

2

22

2

2
22

2

2

1
[ ( ) ]

1
[ ( ) ]

l

l

h

hllij lij hl

jl

hl h

hllij

jl

x y y x
h

x x
h












.         

Now, the calibration estimator of the population mean Y  in stratified systematic sampling under non-

response can be defined as 

'

1

L

lcal lsys

l

y y


 
 (3.6) 

where 
'

2 21 2 2 2 21 2 ( )nl hlnl nl hl nl nllsys nl hly w y w y w x w x   
 

Here, l is also a calibration weight such that it minimizes the chi-square distance 




L

l ll

ll

wq

w

1

2)(

 

where lq is another tuning parameter. 

It is to be noted that by choosing different values of lq and different sets of calibration constraints, we 

can get various types of calibration estimators of the population meanY . Let us now discuss some of 

the cases. 

Case 1: 

In this case, we minimize the chi-square distance subject to the calibration constraint 

1

L

lsysl

l

x X


 
 (3.7) 

where lsysx  is the sample mean for the 
thl  stratum under auxiliary variable. 

Now, we define the Lagrange function as 

2

2 3

1 1

( )
2 ( )

L L
l l

lsysl

l ll l

w
x X

q w


 

 
     

  where 
3  is the Lagrange multiplier.

 Differentiating 2  with respect to l and equating the derivative to zero, we get 

3 lsysl l l lw q w x  
 

 (3.8) 
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Putting the value of l from (3.8) into (3.7), we get the value of 3  as 

1
3

2

1

L

lsysl

l

L

lsysl l

l

X w x

q w x

 









. 

Substituting the value of 
3  into (3.8), one can get the optimum value of 

l and hence (3.6) provides 

the calibration estimator of the population mean Y as 

 

'

'
1

1
2

1 1

1

( )

L

lsysl l lsysL L
l

lsysl lcal lsys L
l l

lsysl l

l

q w x y

y w y X w x

q w x



 



  


 


 (3.9) 

Particularly, if 
1

l
lsys

q
x

 , the calibration estimator given in (3.9) becomes 

 

'

*
1

1

1

L

l lsys

l
cal L

lsysl

l

w y

y X

w x









 (3.10) 

Case 2: 

Here, we minimize the chi-square distance subject to the calibration constraints 

1

L

lsysl

l

x X


 
 (3.11) 

 
 


L

l

L

l

ll w
1 1   

 (3.12) 

Let us define the Lagrange function as 

2

3 4 5

1 1 1 1

( )
2 ( ) 2 ( )

L L L L
l l

lsysl l l

l l l ll l

w
x X w

q w
 

   

 
          

 

where 4  and 5  are the Lagrange multipliers. 

Differentiating 3  with respect to l and equating the derivative to zero, we get 

4 5( )lsysl l l lw q w x    
 (3.13) 

Putting the value of l from (3.13) into (3.11) and (3.12), we get the following matrix: 

2

1 1 4

1

5

1 1

0

L L

L
lsys lsysl l l l

lsysl l l

lL L

lsysl l l l

l l

q w x q w x
X w x

q w x q w
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Solving the above matrix, we respectively get the values of 
4  and 

5  as 

1 1
4

1

( )[ ]
L L

lsysl l l

l l

q w X w x

D
  




 

and 

1 1
5

1

( )[ ]
L L

lsys lsysl l l

l l

q w x X w x

D
  

 


 

 

where 

2
2

1

1 1 1

( )( ) ( )
L L L

lsys lsysl l l l l l

l l l

D q w x q w q w x
  

   
. 

Putting the values of 4 and 5  into (3.13), we can get the optimum value of 
l  and hence, the 

calibration estimator given in (3.6) becomes 

 

'
1

2

1 11

[ ]
L L

lsysl lcal lsys

l l

A
y w y X w x

D 

   
 

where 

' '

1

1 1 1 1

( )( ) ( )( )
L L L L

lsys lsysl l l l l l l llsys lsys

l l l l

A q w y x q w q w x q w y
   

    
 . 

In particular, if 1lq l , the calibration estimator reduces to 

 

* '

2

1 1

ˆ[ ]
L L

lsysl lcal lsys

l l

y w y X w x
 

     (3.14) 

where  

*

1

*

1

ˆ A

D
  , 

' '
*

1

1 1 1

( ) ( )( )
L L L

lsys lsysl l llsys lsys

l l l

A w y x w x w y
  

     and  

2
* 2

1

1 1

( ) ( )
L L

lsys lsysl l

l l

D w x w x
 

  
. 

4. Properties of the Proposed Calibration Estimators 

In order to obtain the variance/mean square errors (MSEs) of 
*

y  and proposed calibration estimators 

 

*

1cal
y  and  

*

2cal
y , we use the Taylor linearization technique. Let 

1 21 2nl nlhhl nl hl
y w y w y    

and hence  

2 2

2 2

( 1) ( 1)
( ) [1 ( 1) ]l l

l ly ly l lyhhl

l l l

N g
V y n S W S

N n n


 
    . 

Moreover, we have 

2 2 22 2 2 2 2( ) [ ( | )] [ ( | )]nl nl nlnl nl l nl lV w x V E w x n E V w x n 

 2 22
22 2 2 2 2

2 2

( 1)
( ) [1 ( 1) ]l

nlnl l l lx lx

l l

N
V w x W n S

N n
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2 2 22 2 2 2 2( ) [ ( | )] [ ( | )]hl hl hlnl nl l nl lV w x V E w x n E V w x n 

 

  2 2
22 2 2

2 2

1 1
nlnl nl lx

l l

V w x E w s
h n

  
    

     

2 2 22
2 2 2 2 2 2

2 2

( 1) 1
[1 ( 1) ]l l

l l lx lx l lx

l l l

N g
W n S W S

N n n


  
     

  , 

2 22 2ov( , )nl hlnl nlC w x w x

2 2 2 22 2 2 2 2 2 2ov[ ( | ), ( | )] [ ov( , | )]nl hl nl hlnl l nl l nl nl lC E w x n E w x n E C w x w x n 
 

2 2
2 2 22 2ov( , ) ( )nl nl nll lW C x x W V x 

 

2 22
2 2 2 2

2 2

( 1)
[1 ( 1) ]l

l l lx lx

l l

N
W n S

N n



  

, 

2 22 2 22
ov( , ) ov( , )nl nlnl nl nlhhl hl

C y w x C w y w x
 

 2 22 2 2 2 2 2 22 2ov[ ( | ), ( | )] [ ov( , | )]nl nlnl l nl l nl nl lhl hlC E w y n E w x n E C w y w x n 

 
2

22 2
ov( , )nll nl

W C y x
 

1 1
2 2 2 2
2 2 2 2 2 2 2 2

2 2

( 1)
[1 ( 1) ] [1 ( 1) ]l

l l ly l lx l ly lx

l l

N
W n n S S

N n
  


    

 

 

and
 

2 22 2 22
ov( , ) ov( , )hl hlnl nl nlhhl hl

C y w x C w y w x
 

 2 22 2 2 2 2 2 22 2ov[ ( | ), ( | )] [ ov( , | )]hl hlnl l nl l nl nl lhl hlC E w y n E w x n E C w y w x n 
 

2 2
22 2 22

2 2

1 1
ov( , )nll nl lxynl

l l

W C y x E w s
h n

  
    

  

 1 1
2 2 2 2
2 2 2 2 2 2 2 2 2 2

2 2

( 1) 1
[1 ( 1) ] [1 ( 1) ]l l

l l ly l lx l ly lx l lxy

l l l

N g
W n n S S W S

N n n
  

  
       

   

where 
2

2lxS is the population mean square of the non-response group in the 
thl  stratum under the 

auxiliary variable. 2lx is the intra-class correlation coefficient between the units of the same 

systematic sample of the non-response group in the 
thl  stratum under auxiliary variable. 2l  is the 

correlation coefficient between the study and auxiliary variables for the non-response group in the 
thl  

stratum. 2 2 2 2lxy l ly lxS S S . 

Let us now calculate )(
'

1

lsys

L

l

l ywMSE 


. We have  

)( 22222211

'

hlnlhlnlhlnlnlnllsys xxwywywy  
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2

2

22

12
2 22 2

22
2

12

1
[ ( ) ]

( )
1

[ ( ) ]

l

l

h

hllij lij hl

jl
nl hlnl nlhhl h

hllij

jl

x y y x
h

y w x w x

x x
h







  






. 

Let

 2 2

2
2 2 22

, ,

( , , , , , )l l l ll lij lij lij

i j S i j S

PAR Y Y X W X x y x
 

  
.  

where 

2

2

,2

1
l lij

i j Sl

Y y
N 

   and  

2

2

,2

1
l lij

i j Sl

X x
N 

  . 
2S is the set of all the non-responding units in 

the 
thl  stratum. 

2lN  is the number of non-responding units in the 
thl  stratum. 

Thus, we have 

'

1
lsys

hhl
PAR

y

y

 
  
 
  ,  

2 2

'

22 1
2 2 2

2 1 12 22

1 1
[ ( ) ][ ( ) ]

l lN N
lsys

l l llij lij lij
nl j jl lnl

PAR

y
x y Y X x X

N Nw x



 

 
    
 
 

 

 2

2

2 22

1 2

2
22 2
22

1

[( ) ]

[( ) ]

l

l

N

l llij lij l

j lxy

lN

lx
llij l

j

x y N Y X
S

S
x N X








  






, 

2 2

'

22 1
2 2 2

2 1 12 22

1 1
[ ( ) ][ ( ) ]

l lN N
lsys

l l llij lij lij
hl j jl lnl

PAR

y
x y Y X x X

N Nw x



 

 
     
 
 

 

 
2

2

2 22

1 2

2
22 2
22

1

[( ) ]

[( ) ]

l

l

N

l llij lij l

j lxy

lN

lx
llij l

j

x y N Y X
S

S
x N X








     






  

and 

2 2

' ' ' '

2 22

1 1

0

( ) ( )
l l

lsys lsys lsys lsys

h h
hlhl

PAR PAR lij lij lij

j jPAR PAR

y y y y

y x
x y x

 

   
         
         
       
        

   
 

 

Therefore, the MSE of 
'

lsysy  becomes 

'
2 2

2 2 22 2 2

2
2 2 22 2 2

( ) ( ) ( ) ( ) 2 ov( , )

2 ov( , ) 2 ov( , )

nl hl nll nl l nl l nllsys hhl hhl

hl nl hll nl l nl nlhhl

MSE y V y V w x V w x C y w x

C y w x C w x w x
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2 2 2 2 22
2 2 2 2 2 2

2 2

( 1) ( 1) ( 1)
[1 ( 1) ] [1 ( 1) ]l l l

l ly ly l ly l l l lx lx

l l l l l

N g N
n S W S W n S

N n n N n
  

  
       

   

2 2 2 22
2 2 2 2 2 2

2 2

( 1) 1
[ {1 ( 1) } ]l l

l l l lx lx l lx

l l l

N g
W n S W S

N n n
 

  
    

   
1 1

2 2 2 2
2 2 2 2 2 2 2 2

2 2

( 1)
2 [1 ( 1) ] [1 ( 1) ]l

l l l ly l lx l ly lx

l l

N
W n n S S

N n
   


    

 

1 1
2 2 2 2
2 2 2 2 2 2 2 2

2 2

( 1)
2 [ {1 ( 1) } {1 ( 1) }l

l l l ly l lx l ly lx

l l

N
W n n S S

N n
   


    

 

2 2 22
2 2 2 2 2 2

2 2

1 ( 1)
] 2 [1 ( 1) ]l l

l lxy l l l lx lx

l l l

g N
W S W n S

n N n
 

  
   

  . 

Consequently, we have            

'
2 2 2

2 2 2

( 1) ( 1)
( ) [1 ( 1) ] (1 )l l

l ly ly l l lylsys

l l l

N g
MSE y n S W S

N n n
 

 
    

  (4.1) 

2( 1)
( ) [1 ( 1) ]l

lsys l lx lx

l l

N
V x n S

N n



  

  
  

 (4.2) 

1 1'
2 2

( 1)
ov( , ) [1 ( 1) ] [1 ( 1) ]l

lsys l ly l lx l ly lxlsys

l l

N
C y x n n S S

N n
  


    

 (4.3) 

'
2 2 2 2

2 2 2

1 1

( 1) ( 1)
( ) [ {1 ( 1) } (1 ) ]

L L
l l

l l l ly ly l l lylsys

l l l l l

N g
MSE w y w n S W S

N n n
 

 

 
     

 (4.4) 

2 2

1 1

( 1)
( ) [1 ( 1) ]

L L
l

lsysl l l lx lx

l l l l

N
V w x w n S

N n


 


   

  
 (4.5) 

1 1'
2 2 2

1 1 1

( 1)
ov( , ) [1 ( 1) ] [1 ( 1) ]

L L L
l

lsysl l l l ly l lx l ly lxlsys

l l l l l

N
C w y w x w n n S S

N n
  

  


      

 (4.6) 

where 
2

lxS  is the population mean square of the entire group in the 
thl  stratum under auxiliary 

variable. 
2

( )( )

( )

l llij lkj

lx
llij

E x X x X

E x X


  
 
  

 is the intra-class correlation coefficient between the units of 

the same systematic sample in the 
thl  stratum under auxiliary variable. lX  is the population mean of 

the auxiliary variable in the 
thl  stratum. 

 
1

22 2

( )( )

( ) ( )

l llij lij

l

l llij lij

E y Y x X

E y Y E x X


 



 

 is the correlation 

coefficient between study and auxiliary variables in the 
thl  stratum. 
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Now, we have 

*

(1)

'

1 ,

1

( )

cal

L

l lsys

l X Y

y

w y


 
 
  
 
 

 


 and 

*

(1)

1 ,

( )

cal

L

lsysl

l X Y

y Y
R

X
w x



 
 
     
 
 

 


 

where 

Y
R

X


. 

Thus, the expression for the MSE of the proposed calibration estimator  

*

1cal
y  is represented as

  

* ' '
2

1

1 1 1 1

( ) ( ) ( ) 2 ( , )
L L L L

lsys lsysl l l lcal lsys lsys

l l l l

MSE y MSE w y R V w x RCov w y w x
   

     
 

2 2 2 2 2 2 2

2 2 2

1 1

( 1) ( 1) ( 1)
[ {1 ( 1) } (1 ) ] [1 ( 1) ]

L L
l l l

l l ly ly l l ly l l lx lx

l ll l l l l

N g N
w n S W S R w n S

N n n N n
  

 

  
         

 

1 1
2 2 2

1

( 1)
2 [1 ( 1) ] [1 ( 1) ]

L
l

l l ly l lx l ly lx

l l l

N
R w n n S S

N n
  




   

 (4.7) 

Now, let  

2*

1 1

( , , , )
L L

l l ll l

l l

PAR Y X w Y X w X
 

   . Therefore, we have 

*

*

(2)

'

1

1

( )

cal

L

l lsys

l PAR

y

w y


 
 
  
 
 

 


,  

*

*

2(2) 2 1

1 1 1 1 1 1

1

[( ) 2( )( ) ( ) ][( ) ( ) ]

( )

L L L L L L
cal

l l l l l l ll l l l l lL
l l l l l l

lsysl

l PAR

y
w Y X w Y w X w Y X w X w X

w x



     



 
 
      
 
 

 

     


     
2 2 1

1 1 1 1 1

[( ) ( )( )][( ) ( ) ]
L L L L L

l l l l l ll l l l l

l l l l l

w Y X w Y w X w X w X 

    

        
 

 and 

* *

* *

(2) (2)

' 2

1 1

0

( ) ( )

cal cal

L L

lsys lsysl llsys

l lPAR PAR

y y

w y x w x
 

   
    
    
   
    

   
 

. 
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Thus, the expression for the MSE of the proposed calibration estimator  

*

2cal
y  is given by  

 

* ' '
2

2

1 1 1 1

( ) ( ) ( ) 2 ov( , )
L L L L

lsys lsysl l l lcal lsys lsys

l l l l

MSE y MSE w y V w x C w y w x 
   

     
 

2 2 2 2 2 2 2

2 2 2

1 1

( 1) ( 1) ( 1)
[ {1 ( 1) } (1 ) ] [1 ( 1) ]

L L
l l l

l l ly ly l l ly l l lx lx

l ll l l l l

N g N
w n S W S w n S

N n n N n
   

 

  
         

1 1
2 2 2

1

( 1)
2 [1 ( 1) ] [1 ( 1) ]

L
l

l l ly l lx l ly lx

l l l

N
w n n S S

N n
   




     (4.8)  

5. Empirical Study 

5.1 Through Real Data 

To examine the performance of the proposed calibration estimators, we have performed an empirical 

study through real data which were collected in a pilot survey for estimating the extent of cultivation 

and production of fresh fruits in three districts of Uttar Pradesh in the year 1976-77 [Daroga and 

Chaudhary (1986), Page 162]. Table 1 and Table 2 depict the particulars of parameters and statistics. 

Table 1: Particulars of Parameter. 

Stratum 

No. 

Total no. of 

villages      
Total area (in 

hect.) under 

orchard      

No. of 

villages in 

sample      

Area under 

orchards in 

hect.      

Total no. of 

trees      

1 985 11253 6 10.63, 9.90, 

1.45, 3.38, 

5.17, 10.35 

747, 719, 78, 

201, 311, 448 

2 2196 25115 8 14.66, 2.61, 

4.35, 9.87, 

2.42,5.60, 4.70, 

36.75 

580, 103, 

316, 739, 

196, 235, 

212, 1646 

3 1020 18870 11 11.60, 5.29, 

7.94, 7.29, 

8.00, 1.20, 

11.50, 7.96, 

23.15, 1.70, 

2.01 

488, 227, 

374, 491, 

499, 50, 455, 

47, 879, 115, 

115 

From the above data, we calculate the following statistic and due to the unavailability of raw data, we 

considered the assumed values for     and    . 
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Table 2: Particulars of Statistic. 

Str. 

No. 
           

     
       

    
  

 

 
   
  

        
    

 

 
    

1 6.81 

 

417.33 

 

15.97 74775.47 1007.05 56081.60 0.82 0.90 0.68 

2 10.12 

 

503.38 132.66 259113.40 5709.16 194335 0.89 0.84 0.63 

3 7.97 

 

340.00 38.44 65885.60 1404.71 49414.2 0.78 0.80 0.60 

Table 3 shows the VAR/MSE of the estimators
*

y ,  

*

1cal
y  and  

*

2cal
y  for the different values of non-

response rate 
2lW  and sub-sample rate

lg . The percentage relative efficiency (PRE) of the proposed 

calibration estimators  

*

1cal
y  and  

*

2cal
y  with respect to the estimator 

*

y has also been given. The 

PRE has been computed using the following formula: 

            
   

        

            
  

           

Table 3: VAR/MSE and PRE of Estimators
*

y ,  

*

1cal
y  and  

*

2cal
y . 

(Parentheses figures show the PRE.) 

5.2    Through Simulated Data  

To get some idea about the efficiency of the proposed calibration estimators, we have generated an 

artificial data set by using the procedure given by Reddy et al. (2010). Here, the population consists of 

six strata with respective sizes 800, 600, 300, 500, 200 and 400. The data under study variable Y  for 

2lW

l  

lg  

l  

VAR/MSE 

*

y   

*

1cal
y   

*

2cal
y  

0.1 2.0 68289.72 (100) 7785.06 (877.19) 6228.01 (1096.49) 

2.5 68660.51 (100) 8007.66 (857.44) 6450.61 (1064.40) 

3.0 69031.29 (100) 8230.26 (838.75) 6673.21 (1034.45) 

0.2 2.0 69031.29(100) 8230.26 (838.75) 6673.21 (1034.45) 

2.5 69772.86 (100) 8675.46 (804.26) 7118.41 (980.18) 

3.0 70514.44 (100) 9120.66 (773.13) 7563.61 (932.29) 

0.3 2.0 69772.86 (100) 8675.46 (804.26) 7118.41 (980.18) 

2.5 70885.22(100) 9343.26 (758.68) 7786.21 (910.39) 

3.0 71997.58 (100) 10011.07 (719.18) 8454.01 (851.64) 

0.4 2.0 70514.44 (100) 9120.66 (773.13) 7563.61 (932.29) 

2.5 71997.58 (100) 10011.07 (719.18) 8454.01 (851.64) 

3.0 73480.73 (100) 10901.47 (674.04) 9344.42 (786.36) 
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each stratum have been generated from Normal distribution with certain mean and standard deviation 

(S. D.). We have generated the data under a dummy variable Z  for each stratum with the same 

distribution as that of Y . Finally, we have generated the data under the auxiliary variable X  for each 

stratum using the transformation
21l l l l lX Y Z    . The assumed means, standard deviations and 

correlation coefficients are given in Table 4. 

Table 4: Particulars of Population. 

Stratum 

No. 

 l  

Stratum Population for Study 

Variable Y  

Stratum Size 

 lN  

Correlation Coefficient 

 l  

1 ( 21, . . 6.5)N Mean S D   800 0.8903 

2 ( 30, . . 6.6)N Mean S D   600 0.9161 

3 ( 24, . . 6.7)N Mean S D   300 0.8522 

4 ( 33, . . 6.8)N Mean S D   500 0.8927 

5 ( 27, . . 6.9)N Mean S D   200 0.8980 

6 ( 36, . . 7.0)N Mean S D   400 0.8956 

 

Here N =2800, n =840. To determine the sample size for each stratum, proportional allocation has 

been used. Now, we select a sample of the specified size from each stratum using a systematic 

sampling scheme and then select a sub-sample from the non-responding units according to the sub-

sample rate ( 2.0,2.5,3.0)lg  . The number of responding units in each stratum has been fixed 

according to the non-response rate 2lW ( 0.1,0.2,0.3,0.4) . Subsequently, the estimates of the 

population mean Y  have been obtained using the estimators
*

y ,  

*

1cal
y  and  

*

2cal
y . We simulate the 

process of selecting the sample/sub-sample and obtaining the estimate 5000 times. Ultimately, we 

have computed the approximate VAR/MSE (AVAR/AMSE) of the estimators
*

y ,  

*

1cal
y  and  

*

2cal
y  

using the following formulae: 

   
5000 2

* *

1

1

5000
t

t

AVAR y y Y


  ; 1, 2,...,5000t   

     
5000 2

* *

1 1

1

1

5000
cal cal t

t

AMSE y y Y


  ; 1, 2,...,5000t   

     
5000 2

* *

2 2

1

1

5000
cal cal t

t

AMSE y y Y


  ; 1, 2,...,5000t   

Table 5 depicts the AVAR/AMSE of the estimators
*

y ,  

*

1cal
y  and  

*

2cal
y  for the different choices of 

non-response rate 2lW  and sub-sample rate lg . The percentage relative efficiency (PRE) of the 
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proposed calibration estimators  

*

1cal
y  and  

*

2cal
y  with respect to the estimator 

*

y has also been 

given. The PRE has been computed using the following formula: 

  
 

*
*

*

( )
100; 1,2

( )
cal j

cal j

AVAR y
PRE y j

AMSE y
    

Table 5: AVAR/AMSE and PRE of Estimators
*

y ,  

*

1cal
y  and  

*

2cal
y . 

2lW  

l  

lg l  AVAR/AMSE 

*

y   

*

1cal
y   

*

2cal
y  

0.1 2.0 0.046484 (100) 0.005487 (847.18) 0.005094 (912.54) 

2.5 0.049151 (100) 0.005856 (839.34) 0.005479 (897.04) 

3.0 0.052342 (100) 0.006882 (760.54) 0.006552 (798.91) 

0.2 2.0 0.052638 (100) 0.007102 (741.15) 0.006612 (796.07) 

2.5 0.055034 (100) 0.007555 (728.45) 0.007078 (777.53) 

3.0 0.063449 (100) 0.008888 (713.91) 0.008423 (753.30) 

0.3 2.0 0.057096 (100) 0.008517 (670.40) 0.008015 (712.35) 

2.5 0.064169 (100) 0.010254 (625.78) 0.009732 (659.35) 

3.0 0.073473 (100) 0.012344 (595.19) 0.011798 (622.75) 

0.4 2.0 0.062038 (100) 0.009478 (654.53) 0.008934 (694.43) 

2.5 0.069505 (100) 0.011523 (603.19) 0.010947 (634.94) 

3.0 0.080141 (100) 0.013929 (575.37) 0.013302 (602.46) 

(Parentheses figures show the PRE) 

6. Analysis of Tables 

Table 3 and Table 5 show that as we increase the non-response rate    , MSE/AMSE increases and 

PRE decreases and if we decrease the sub-sample size     (increases sub-sample rate
lg ) MSE/AMSE 

increases, and hence PRE decreases. Also, we have 

                 
                     

                  and 

            
                

              

So, in between proposed calibration estimators          
  and          

   perform better than      

           7.    Concluding Remarks 

In this paper, we have proposed some improved calibration estimators of the population mean under 

stratified systematic sampling in the presence of non-response. The information on an auxiliary 

variable is utilized to compensate for reduced precision due to non-response. The expressions for the 

MSE of the proposed calibration estimators have been derived using the Taylor linearization 

technique. An empirical study based on simulated and real data has been carried out to check the 

efficiency of the proposed calibration estimators. The MSE/AMSE has been used as a tool to check 

the precision of the proposed calibration estimators over the usual Hansen-Hurwitz (1946) estimator 

under stratified systematic sampling. The study reveals that the proposed calibration estimators 

provide better results as compared to the existing one and hence the proposed calibration estimators 

can play an important role in the real-life situations. 
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