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ABSTRACT 

A random geometric graph is defined as follows: for a set of random points 

in some set     , fix     and connect a pair of points    , provided 

that        . The graph generated with the set of points as the 

vertices and the random set of edges thus constructed, is called random 

geometric graph. Previous studies have been conducted under the 

assumption that the random set of points originate as an i.i.d. sample from 

a density function that is bounded away from zero on  . We restrict our 

attention to densities on ,   - having a zero at the origin. Under this 

assumption, we study the asymptotic behaviour of connectivity distance of 

the random geometric graph. Our results show that the connectivity 

distance behaves differently as compared to the case of densities that are 

bounded away from zero. 

 

1. Introduction and Statement of Results 

Phenomenon of random geometric graphs arise quite naturally. For example, 

there is a network of communication stations distributed across the country and 

people connect to the stations according to the proximity of a station. The spread 

of forest fire depends on the proximity of the neighboring trees. A neural network 

is viewed as computation units with connections between nearby layers. The 

constellations of stars are grouped according to their positions in the sky. 

Clustering principles are based on the proximity of two observations. It is natural 

for a statistician to model such situations and make numerical measurements so 

as to study different aspects of the network. These models would be based on the 

geometry of underlying spaces and the random geometric graph becomes an 

integral part of the model. 

Gilbert (1961) first introduced the random geometric graph to model the 

communications between radio stations. Gilbert's original model was defined on 
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the unbounded space as follows: pick points in    according to a Poisson Point 

Process of intensity one and join two points if their distance is less than some 

parameter    . The Gilbert model has given rise to the percolation theory in 

the continuum which has been intensively studied in the last few decades. 

The most closely related model of the Gilbert's model is where   nodes are 

independently and identically distributed on the space. A random geometric 

graph is formally defined as follows: let    be a set of random points in some set 

     for    . Fix    . For a pair of points       , the points are 

connected by an un-directed edge if        . This results in a random 

graph with the vertex set    and the random edge set generated by the 

mechanism given above. We denote the above graph by  (    ). 

The random geometric graph has been studied extensively in the last decade. A 

large body of literature has been devoted to studying the properties of low-

dimensional random geometric graphs (see Dall and Christensen (2002), Penrose 

(2003), Bollobás (2001)). Random geometric graphs have found wide 

applications in a very large span of fields. One can mention wireless networks 

(Haenggi et al. (2009), Mao and Anderson (2012)), gossip algorithms (Wang and 

Lin (2018)), consensus building (Estrada and Sheerin (2016)), spread of a virus 

(Preciado and Jadbabaie (2009)), protein-protein interactions (Higham et al. 

(2008)), citation networks  (Xie et al. (2016)), robotics (Solovey et al. (2018)) 

etc. The ubiquity of this random graph model to faithfully represent real world 

networks has motivated a great interest in its theoretical study. 

The most commonly occurring random geometric graphs arise from the 

independent and identically distributed points in the subset of   . Let         

be a sequence of independent and identically distributed random variables with 

common density   on  . In this article, we consider the common density   of the 

sequence belonging to a particular class, which we will introduce shortly. From 

any realizations of the sequence *      +, we construct the random geometric 

graph. For every    , we consider the first   realizations, i.e., let us set 

   *          + 

With   , defined above, and    , we construct the graph  (    ) as described 

above, i.e., connect two vertices    and    of    by an edge if and only   

 |     |   . 
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When the sample observations are taken from a distribution having a density 

which is bounded below, a lot of results are known. Walters (2011) has provided 

a survey of the properties of the random geometric graph including connectivity, 

giant component, coverage or chromatic number. Two limiting regimes in the 

random geometric graph are of special interest. One of these is the 

thermodynamic limit in which the expected degree of a typical vertex tends to a 

constant. In this regime, in the limiting version, one observes   points in a region 

of volume proportional to  , with their inter-point distances becoming roughly 

constant. If the limiting inter point distance in the random geometric graph 

exceeds a certain critical value then there is likely to be existence of giant 

component. 

The second limiting regime is the connectivity regime, which is the special case 

of the dense limit regime. Here the typical vertex degree grows logarithmically in 

 . Clearly, a necessary condition for connectivity is that there will be no isolated 

points, and this turns out to be sufficient with high probability as    . We 

refer the readers to Penrose (2003) for more details. 

We want to study the connectivity property of the random geometric graph. A 

graph is called connected if it has only one component. For un-directed graphs, it 

is easy to see that the graph is connected if from every vertex, we can reach any 

other vertex using a finite set of edges. In this case, we clearly see that as the 

value of the parameter   increases, the more pairs of edges get connected. Hence 

the connectivity is an increasing property of  . Therefore, it makes sense to 

consider the minimum value of   above which the graph is connected. Let 

  (    ) be the critical connectivity parameter defined by 

  (   )     {     (    )              }                            (1.1) 

Since the set of vertices    are coming from a continuous density, no two points 

are same. Hence, for every    , we see that 

   {|     |        }    

So, it is the case that   (   )     {|     |        }   . Also, when    

   , all pairs are trivially connected. Therefore, we have   (   )   . In other 

words, the critical value   (    ) is non-trivial. It is intuitively obvious that as 
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the number of vertices increase the critical connectivity parameter will decrease. 

Our aim is to show how the critical value behaves as   approaches infinity. 

Previous works including Penrose (2003) have been devoted to the case where 

the density is bounded below. In this article, we consider the class of power law 

densities on ,   - which admits a zero. It is natural to consider the family of 

densities given by       for    . However, for      , this density is 

bounded away from 0 and hence is already covered by the results of Penrose 

(2003). Therefore, we need to consider the case when    . Thus, taking             

       , we have the density function    given by 

  ( )  (   )         ,   -  (1.2) 

Here     may be taken as the parameter. 

The following simulations show that the behaviour of the critical connectivity 

parameter behaves very differently than the case usually considered, though for 

different values of  , the simulation shows remarkable similarity in shape and 

type of distribution. 

 

 

Fig. 1: Critical Connectivity distance with       and        . 
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Fig. 2: Critical Connectivity distance with     and        . 

 

 

 

 

Fig. 3: Critical Connectivity distance with     and        . 
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Fig. 4: Critical Connectivity distance with     and        . 

 

Before we state our result, we need to introduce the limiting random variables. 

Let         be a sequence of independent and identically distributed random 

random variables with each distributed as an exponential distribution with 

parameter 1. Let 

us define the partial sums, i.e., let 

   ∑   
         

 (1.3) 

For any    , let    be defined by 

      2    
   

   
   

    3 (1.4) 

Note that our results will involve   . Therefore, we need to show that    is a 

proper random variable. We relegate to the next section (see Lemma 1). 

Theorem 1: Let *        + be i.i.d. samples from a distribution having 

density    for     and let   (    ) denote the critical parameter for the 

random geometric graph to become connected. Then, 

   (   )  (    )       (1.5) 

where      is as defined above. 
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At this point, we have no further information on the limiting random variable   . 

However simulation results show (see Fig.       and 8) that the limiting random 

variable should be continuous, unimodal with sharply decaying tail probabilities. 

It also appears that the random variable should have a density, though we have 

no result towards that direction at the moment. 

 

 

Fig. 5: Limiting distribution for Critical Connectivity distance with      . 

 

 

 

 

Fig. 6: Limiting distribution for Critical Connectivity distance with    . 
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Fig. 7: Limiting distribution for Critical Connectivity distance with    . 

 

Fig. 8: Limiting distribution for Critical Connectivity distance with    . 

The theorem clearly shows for large  , the critical value is proportional to 

inverse power of  , however the limiting random variable is random. In case of 

Penrose (2003), it is assumed that the densities are bounded away from 0, i.e., 

there is a constant     such that  ( )    for all   ,   -. Clearly, this 

condition does not hold in our case and hence similar results cannot be expected. 

Indeed, we show that in our case, the scaling factor is different and we obtain a 

limit which depends upon the parameter  . Further, in case of Penrose (2003), 

the limit is non-random while in our case the limit is random. 

In order to study the critical parameter   (    ), we will introduce another 

object. Let  (   )   (   )    (   ) be the order statistic obtained from 
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          . We define the spacings (distance between the ordered random 

variables) as follows: for            , set 

 (   )   (     )   (   ) (1.6) 

Let us set 

      { (   )        } (1.7) 

Let us consider a value   for which graph is connected, then we must have 

 (   )    for all        . Hence, we have 

      { (   )        }    

Hence,      (    ) 

Conversely, if      then there exists   such that       . Hence, the distance 

between  (     ) and  (   ) must be larger than   and there are no points in 

between them. So, the pair ( (     )  (   )) will not be connected. Thus, the 

graph is disconnected. Hence,      (    ). 

So, combining both the inequalities, we observe that the critical value   (    ) 

for the graph to be connected is actually given by 

  (    )        { (   )        } (1.8) 

In view of equation (1.8), our Theorem can be restated as follows: 

Theorem 2: Let *        + be i.i.d. samples from a distribution having 

density    for    . Let    represent the maximal spacing as defined in (1.7). 

Then, 

   (   )        (1.9) 

where      is as defined above. 

In the next section we prove Theorem 2. To prove the result, we will use the 

representation of order statistics through exponential random variables with 

parameter 1. 

2. Proof of the Result 

We first show that the random variable, defined in the introduction, is a proper 

random variable. 

Lemma 1: For any    , the random variable    defined in (1.4) is finite 

almost surely. 
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Proof: We note that    is a partial sum of i.i.d. random variables with 

expectation 1. Thus, by strong law of large numbers (see Theorem 22.1. of 

Billingsley 1986), we have that 

   
   

 
  

 
                  

Consider the function  ( )      . Note,   ( )  
 

 
       and clearly it is a 

`decreasing function for     as    . Now, we use the Mean Value Theorem, 

on   with       to obtain 

 ( )   ( )  (   )  ( )  (   )  ( ) 

where   (   ) and we have used the fact the    is a decreasing function. 

Now, setting      and               , using above, we obtain that 

    
   

   
   

     
 

 
(  )      

 

 
.

 

  
/

     
.

    

      /   (2.1) 

We show that the right hand side will converge to 0 almost surely. Assuming it 

we first show that    is finite almost surely. 

Indeed, for every  , there will exist   (depending on  ), such that     
   

 

  
   

  1 for all    . Thus, the supremum defined above must be dominated 

by the maximum of 1 and   
   

   
   

   
   

   
   

     
   

     
   

. Hence    

is finite almost surely. 

To show that the right hand side of (2.1) converges to 0 almost surely, we use 

standard Borel Cantelli Lemma (see Theorem 4.3. of Billingsley 1986). Note that 

it is enough to show that the last term converges to 0 almost surely, as the first 

term (    )      will converge to 1 almost surely since      converges to 1. 

We show for any               almost surely. Indeed, for any    , we 

have 

 (
    

  
  )   (        )      (    ) 

Hence, using the fact that the function       (    ) is decreasing, we have 

 ∑  

 

   

  (        )  ∑  

 

   

     (    )  ∑  

 

   

 ∫  
 

   

     (    )   ∫  
 

 

     (    )  

  ∫  
 

 

     (  )
 

 
(   )

 
 

  
   

 

  
 
 

  
 (   )                                                                 

 

 (2.2) 
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where we have used the transformation       in converting the integral. This 

proves the result. 

An important corollary would be required in the proof. Let us define 

  ( )     2    
   

   
   

      3 (2.3) 

For every   for which   ( )   , we must have   ( )( )    ( ). Thus, we 

have following corollary: 

Corollary 2.1: For any    , we have 

  ( )                           (2.4) 

Next we prove a lemma which will connect order statistic of random variables to 

the powers of partial sums of exponentials. For that we need a representation of 

the order statistics from uniform random variables through exponential random 

variables. Let         be a sequence of i.i.d. uniform random variables. Let 

   (  )  (   ) 

for all    . We note that the sequence *      + are i.i.d. The common density 

is also given by    (see equation (1.2)). 

Let ( (   )   (   )    (   )) be the ordered statistic obtained from the first   

uniform random variables,           . Since      (   ) is a monotone 

transformation, we must have, 

 (   )  ( (   ))
  (   )

 (2.5) 

for          . 

Now, we will use the representation of order statistic from the uniform 

distribution. Let *      + be a sequence of i.i.d. exponential random variables 

with parameter 1. Let    ∑   
     for any    . Then we can represent the 

order statistic from uniform distribution as ratio of partial sums of exponentials 

(see David & Nagaraja (2003) for example). In other words, 

( (   )    (   ))  
 

(
  

    
   

  

    
) 

Here  
 

 stands for the equality in distribution. 

By monotonicity of the transformation      (   ), we have 
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. (   )
  (   )

    (   )
  (   )

/   
 

4(
  

    
)

  (   )

   (
  

    
)

  (   )

5

( (   )    (   ))   
 

4(
  

    
)

  (   )

   (
  

    
)

  (   )

5  

 

 (2.6) 

We will now use the equality in distribution in (2.6) to conclude many of our 

results. 

Lemma 2: Fix any    . We have 

   (   )( (   )  (   )   (   ))  .  
  (   )

   
  (   )

     
  (   )

/ (2.7) 

Here,   represents convergence in distribution. 

Proof: Fix any    . By constant multiplication also, the order statistics will 

maintain the above distributional equality. So, for the first   variates, we have 

   (   )( (   )    (   ))  
 

4(
   

    
)

  (   )

   (
   

    
)

  (   )

5 

Now, we let     on the right hand side. Observing that        almost 

surely, by the strong law of large numbers, we can now write the right hand side 

as, 

   
   

 (
   

    
)

  (   )

   
  (   )

   
   

 (
 

    
)

  (   )

   
  (   )

 

almost surely, for each          . Thus, we have 

   
   

 4(
   

    
)

  (   )

   (
   

    
)

  (   )

5  .  
  (   )

     
  (   )

/ 

almost surely. Therefore, the convergence is also in distribution. Hence, we 

conclude that 

4(
   

    
)

  (   )

   (
   

    
)

  (   )

5  .  
  (   )

     
  (   )

/ 

Thus, using equality of distribution in (2.6), we have 

   (   )( (   )    (   ))  .  
  (   )

     
  (   )

/ 

This completes the proof. 
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Next, we will connect the spacings with the limiting random variables. 

Lemma 3: Fix any    . We have 

   (   )( (   )   (   ))  .  
  (   )

   
  (   )

       
  (   )

   
  (   )

/  

 (2.8) 

Proof : We use Lemma 2 and the continuous mapping theorem (see Theorem 

25.7. of Billingsley (1986)). Note that the mapping           defined by 

 (            )  (               ) 

is a continuous function. Hence, using Lemma 2, we have 

 .   (   )( (   )  (   )   (     ))/   .  
  (   )

   
  (   )

       
  (   )

/  

i.e., 

   (   )( (   )   (   ))  .  
  (   )

   
  (   )

       
  (   )

   
  (   )

/ 

This proves the result. 

Next we will again use continuity theorem to connect with the maximum of the 

spacings and maximum of the limiting random variables in the above Lemma. 

Lemma 4: Fix any    . We have 

   (   )   { (   )      }    (   ) (2.9) 

as     where   (   ) is as defined in equation (2.3). 

Proof : Here we use the fact that the mapping        defined by 

 (          )     *        + 

is also a continuous function. Hence, applying the continuous mapping Theorem 

(Theorem 25.7. of Billingsley (1986)) on the result of Lemma 3, we have 

 .   (   )( (   )   (   ))/   .(  
  (   )

   
  (   )

       
  (   )

   
  (   )

)/ 

i.e., 

   (   )   { (   )      }      {   (   ) (   )      }

     2    
  (   )

   
  (   )

      3

    (   )

 

This proves the result. 
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Before we prove the result, we prove one more auxiliary result which we will use 

in the proof. 

Lemma 5: For any    , we have 

       
   

          
   

  (   (   )   { (   )          }   )    (2.10) 

Proof : We know from the representation in equation (2.6) that 

   (   )   { (   )          }

  
 

   8(
     

    
)

  (   )

 (
   

    
)

  (   )

          9  
 

Thus, we have 

 [   (   )   { (   )          }   ]

   6   8(
     

    
)

  (   )

 (
   

    
)

  (   )

          9   7

   6(
 

    
)

  (   )

   2    
  (   )

   
  (   )

          3   7  

 

We will split the above event into two parts by intersecting with the events 

*        + and *        +. Thus, we have 

 6(
 

    

)
  (   )

   2    
  (   )

   
  (   )

          3   7

   6(
 

    

)
  (   )

   2    
  (   )

   
  (   )

          3            7

       6(
 

    

)
  (   )

   2    
  (   )

   
  (   )

          3            7

   6(
 

    

)
  (   )

   2    
  (   )

   
  (   )

          3            7

            (        ) 

 

The second term is easy to estimate. We have 

 (        )   (               )

  (|        |       )  

Using Chebyshev's inequality, we have 

 (        )  
    (    )

(   )   
 

 (   )

(   ) 
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We observe that  (        )    as     

For the first term, we note that if         , then .
 

    
/

  (   )
    (   ). 

Hence, we have    2    
  (   )

   
  (   )

          3       (   ). 

Thus, we have that 

8(
 

    
)

  (   )

   2    
  (   )

   
  (   )

          3            9

  2   2    
  (   )

   
  (   )

          3       (   )3  

 

Let us denote      (   ) by  . Further, we see that the event in the right hand 

side can be written as 

2   2    
  (   )

   
  (   )

          3    3

  ⋃  

   

     

 2    
  (   )

   
  (   )

   3
 

Again, using the same estimate as in (2.1), we have 

    
  (   )

   
  (   )

 
    

(   )  
  (   )

 

So, we have that 

2    
  (   )

   
  (   )

   3  {
    

(   )  
  (   )

   } 

We will split this event into two more parts. We have 

{
    

(   )  
  (   )

   }

  {
    

(   )  
  (   )

          }  {
    

(   )  
  (   )

          }

  *      +  {     (   )   (   )  }

 

where the last inclusion follows from the fact that if       , then we must have 

     (   )   (   )  . Combining all these, we obtain that 
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 0   2    
  (   )

   
  (   )

          3    1

  ∑  

   

     

  0    
  (   )

   
  (   )

   1

  ∑  

   

     

  ,      -  ∑  

   

     

  [     (   )   (   )  ]

  ∑  

 

     

  ,      -  ∑  

 

     

  [     (   )   (   )  ] 

 

Thus, we have obtained, 

 [   (   )   { (   )          }   ]

  
 (   )

(   ) 
 ∑  

 

     

  ,      -  ∑  

 

     

  [     (   )   (   )  ] 
 

Taking limsup as   increases to infinity, we see that the first term in the right 

hand side converges to 0 while the remaining two terms are independent of  . So, 

we have 

        
   

  [   (   )   { (   )          }   ]

  ∑  

 

     

  ,      -  ∑  

 

     

  [     (   )   (   )  ] 
 

Now, note that we will need to take a further limsup as   increases to infinity. 

Further the above sums are the tail parts of the sums ∑   
   ,      - and 

∑   
   ,      (   )   (   )  ] respectively. If we are able to show that the 

sums are finite, then the tail part will converge to 0, proving our result. 

For the first sum, we will employ a similar method, except the fact that we need 

to go to higher moment this time. Note that    follows a Gamma distribution with 

parameter   and 1. Hence the fourth centered moment is given by           . 

Thus, we have 

 ,      -   ,|    |     -  
 ((    ) )

(   ) 
 

   

     
 

   

  
  

This takes care of the first summation. 
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For the second summation, we have already observed that (see equation (2.2)), 

for any     and    , the sum ∑   
   (        )   . Therefore, the sum 

is also finite. This completes the proof. 

Now, we are ready to prove our result. Let us introduce the following notation for 

the ease of writing the steps of calculations: 

  (   )     (   )   { (   )      }  (2.11) 

Note that we may rewrite Lemma 4 and Lemma 5 in terms of above notation. 

Indeed, we have,   (   )    (   ) as    . Similarly, we can rewrite, to 

say                        (  (        )   )   . 

Proof of Theorem 2 : Fix any    . We want to prove that 

   
   

  (   (   )   { (   )        }   )

     
   

  (  (     )   )   (      ) 
 (2.12) 

First, we observe that, for any fixed     , we must have 

*  (    )   +  *  (     )   + 

as in the right hand side, we have introduced more conditions. Thus, we have 

 (  (     )   )   (  (    )   ) 

Taking limsup of both sides and observing that the limit of the right hand exists 

by Lemma 4, we obtain that 

       
   

  (  (     )   )     
   

  (  (    )   )   (   
(   )   ) 

Now, we may let    increase to infinity. By Corollary        
(   ) converges 

almost surely to     ; hence in distribution. Now, observing that the left hand 

side does not depend on   , we have that 

       
   

  (  (     )   )     
    

  (   
(   )   )   (      ) 

 (2.13) 

For the other bound, we again fix     . We have that 
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 (  (    )   )

   (  (    )      (     )   )   (  (    )      (     )   )

   (  (     )   )   (  (    )      (        )   )

   (  (     )   )   (  (        )   ) 

 

Thus, we have 

 (  (     )   )   (  (    )   )   (  (        )   ) (2.14) 

We take liminf of both sides of (2.14). Again, from Lemma 4, we obtain that limit 

of the first term in the right hand side exists and equals  (   
(   )   ). 

Also, noting that       (     )                   , we obtain, 

        
   

  (  (     )   )

         
   

  (  (    )   )         
   

  (  (        )   )

   (   
(   )   )         

   
  (  (        )   ) 

 

Now again we take liminf as     . Since the left hand side is independent of 

   and    
(   ) converges almost surely to     , we have 

        
   

  (  (     )   )

         
    

  (   
(   )   )         

    
        

   
  (  (        )   )

   (      )

 

where in the last line we have used Lemma 5 to conclude that the last term has no 

contribution. Therefore, combining with equation (2.13), we conclude the result 

in equation (2.12). This proves the result. 
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