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ABSTRACT 

In this article, we introduce a new family of distributions namely, 

Marshall-Olkin generalized Esscher transformed Laplace distribution, 

which is a generalization of the three parameter Esscher transformed 

Laplace distribution. We obtain explicit forms for their density, 

distribution function and Hazard function. Properties of the distribution 

are studied and a real application of the distribution is considered. We also 

derive an AR (1) process with Marshall-Olkin generalized Esscher 

transformed Laplace distribution as stationary marginal and its properties 

are studied. The Kumaraswamy generalization of the Marshall-Olkin 

generalized Esscher transformed Laplace distribution is proposed along 

with its properties.  

1. Introduction 

Many generalizations of the various probability distributions that can be used to 

better reflect the distribution of the original data sets from diverse fields such as 

biomedical sciences, climatology, environmental, financial, image processing, 

signal processing and telecommunications are introduced so far and one among 

them is that introduced by Marshall and Olkin (1997).  Such generalizations can 

be used to better reflect the distribution of the original data set. The recently 

introduced univariate distributions belonging to the Marshall-Olkin family of 

distributions are Marshall-Olkin Weibull Ghitany et al. (2005), Marshall-Olkin 

Pareto Alice and Jose (2003), Marshall-Olkin semi-Weibull Alice and Jose 

(2005), Marshall-Olkin ETL Dais George and Sebastian George (2013), 

Marshall- Olkin Lomax Ghitany et al. (2007), Marshall-Olkin semi Burr and 

Marshall-Olkin Burr Jayakumar and Thomas (2008) and Marshall-Olkin q-

Weibull Jose et al. (2010)], bivariate Marshall Olkin Weibull Jose et al. (2011), 
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Marshall-Olkin Frechet Krishna et al. (2013a,b), Marshall- Olkin Morgenstern 

Weibull Jose et al. (2013) and Modified generalized marshall-olkin family of 

distributions Muhammad Aslam et al. (2019). 

Tahir et al. (2015) provides a detail account of some generalizations of univariate 

continuous distributions through the introduction of additional parameters. One 

among them is the Kumaraswamy Marshal-Olkin family proposed by Alizadeh  

et al. (2015) by integrating the Kumaraswamy-G family Cordeiro and de Castro, 

(2011) as the base line distribution. Based on this method we propose a new 

family of Marshall-Olkin generalized Esscher transformed Laplace distribution 

namely, Kumaraswamy Marshall-Olkin generalized Esscher transformed Laplace 

distribution which introduces more asymmetry and heavier tails in the base 

distribution. 

In the last several decades various forms of skewed Laplace distributions have 

appeared in the literature see, McGill (1962), Holla and Bhattacharya (1968), 

Balakrishnan and Ambagaspitiya (1994), Kozumbowski and Podgorski (2000) 

and Poiraud-Casanova and Thomas-Agnam (2000). One parameter Esscher 

transformed Laplace distribution is a new class of asymmetric Laplace 

distributions introduced by Sebastian and Dais (2012) through Esscher 

transformation. It is a sub-class of one parameter exponential family and an 

alternative to various types of asymmetric Laplace distributions given in 

Kozubowski and Podgorski (2000). This class of distributions satisfy several 

properties compared to the general class of asymmetric Laplace distributions. 

These distributions are unimodal with mode equal to zero.  

A major advantage of the class of ETL (τ) distributions over the general class of 

asymmetric Laplace distributions is that ETL (τ) belongs to a regular one 

parameter exponential family and hence families of this type are especially 

tractable for statistical inference. The various representations, properties and 

applications of the distribution are studied for more details see, Dais George and 

Sebastian George (2011) and Sebastian George and Dais George (2012). The 

Marshall-Olkin generalization of this distribution with application in time series 

analysis and the distribution of e X, where X follows Esscher transformed 

Laplace distribution are also studied, see George and George (2013),Sebastian 

George et al. (2016), Dais George et al. (2016), Dais George and Rimsha (2017), 

Rimsha and Dais George (2018), Rimsha and Dais George (2019), 

Krishnakumari. K and Dais George (2020) and Rimsha and Dais George (2020). 

The rest of the paper is organized as follows. We introduced a Marshall-Olkin 

generalized Esscher transformed Laplace distribution by adding a new parameter 

to the existing distribution in Section 2. In Section 3, we estimate the parameters 
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of the distribution by the method of maximum likelihood and by method of 

moments. An autoregressive process with Marshall-Olkin generalized Esscher 

transformed Laplace distribution as marginal is developed and its properties are 

studied in Section 4. In Section 5, we discuss the real application of the 

distribution in remission times of bladder cancer patients. Finally we conclude 

the paper by Section 6. 

2. Marshall-Olkin Generalized Esscher Transformed Laplace 

Distribution 

In this paper we introduced Marshall-Olkingeneralized Esscher transformed 

Laplace distribution, which is a generalization of the three parameter Esscher 

transformed Laplace distribution. Three parameter Esscher transformed laplace 

distribution is the location scale family of the one parameter Esscher transformed 

laplace distribution denoted by ETL (θ, µ, σ). The probability density function 

and distribution function of the three parameter Esscher transformed Laplace 

distribution are, 
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The characteristic function of the distribution is, 
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 (2.3) 

This distribution being a heavy-tailed distribution is a competing model for data 

related with biomedical sciences, climatology, environmental, financial, image 

processing, signal processing and telecommunications. The distribution is infinite 

divisible, geometric infinite divisible and self-decomposable (for details see, 

Sebastian George and Dais George (2012) & Sebastian George et al. (2016)). 

According to the method proposed by Marshall and Olkin (1997), if  (t) is a 

characteristic function of some arbitrary distribution, then 



Rimsha H and Dais George 

44 

 

 ( )  
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          (2.4) 

When β = 1,  (t) =  (t). If X is a random variable with characteristic function 

(2.3), using (2.4) we get a new family of distributions which we shall refer to 

Marshall-Olkin Generalized Esscher transformed Laplace [MOGETL] 

distribution. The characteristic function of MOGETL distribution is given by, 
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and a random variable X with this characteristic function can be represented as

. The probability density function and cumulative distribution 

of MOGETL distributions are respectively, 
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Where   
  √     

  √           
. 

The graphs of the probability density function of MOGETL (β, θ, µ, σ) 

distribution are given in  

Figure 1. Densities of Marshall Olkin Generalized Esscher transformed Laplace 

distribution for 

 

(a) β = 0.26, 0.56, 1.8, θ = 0.03, σ = 1.5 and µ = 0.2 (b) β = 0.56, θ = -0.09, 

0.001, 0.09, σ = 1.5 and µ = 0.2 (c) β = 0.56, θ = 0.03, σ = 0.9, 1.5, 1.8 and 

µ = 0.2 (d) β = 0.56, θ = 0.03, σ =1.5 and µ= -1.5, 0.2, 1.5. 
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It is seen from the graph that for β < 0, the distribution is left heavy tailed and for 

β > 0, it is right heavy-tailed. The mean, variance, moment generating function, 

characteristic function and hazard function of the MOGETL (β, θ, µ, σ) 

distribution are given by 
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Hazard rate Function, H(x) = {
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Now we consider the Marshall-Olkin generalized Esscher transformed Laplace 

distribution with location at origin. Then the pdf and d.f of the MOGETL(β, θ, σ) 

distribution are 
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We re-parameterize the distribution given in (2.8), by putting √ (    )=λ and 

√   

√   
   so that re parameterized model is given by, 
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Figure 2 represents the probability density plots of MOGETL (κ, λ, σ) 

distribution.  
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Figure 2: Densities of Marshall Olkin Generalized Esscher transformed Laplace 

distribution for (a) κ = 0.56, λ= 0.03$ and σ = 0.9, 1.5, 1.8 (b) λ = -0.03, σ = 1.5$ 

and κ = 0.26, 0.56, 1.8 (c) κ = 0.56, σ = 1.5 and λ = -0.09, 0.001, 0.09. 

 

  

 

 

 

It is clear that the distribution is unimodal with mode equal to zero and we can 

notice characteristic peakedness of the density at zero. The mean, variance, 

hazard rate function, moments, skewness and kurtosis are  

The n 
th
 arbitrary moment of MOGETL distribution is given by 

E(x n ) = n!(
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3. Estimation of Parameters 

In this section, for estimating the parameters, we use the method of maximum 

likelihood and method of moments. 

3.1  Maximum Likelihood Estimation  

For the easiness of the estimation process, we re-parameterize the distribution 

given in (2.9), by putting κ   = 
 

 
   and    =    so that the re-parameterized model 

is given by 
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 (3.1) 

where   > 0 and   > 0 are the model parameters. We will use the notation 

MOGETL ( ,  , σ) to refer this distribution. The skewness and kurtosis of the 

distribution depends on   and  . 

Skewness = 
 (     ) 

(   )          and 

Kurtosis = 
             

      

The probability density plots of the re-parameterize MOGETL distribution is 

given in. 
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Figure 3: Densities of Marshall Olkin Generalized Esschertrans formed Laplace 

distribution for (a)   = 1.5, σ = 1.5 and   = 0.5, 0.9, 1.2 (b)   = 1.5, σ = 1.5$ and 

  = 0.5, 0.9, 1.2. 

 

 
 

A value of   >   suggests that the right tail is thinner and there is less probability 

concentration to the right side of zero than the left side. Similarly, if   >   the left 

tail will be thinner and there will be less probability concentration to the left of 

zero than the right side. When   =  , the distribution becomes symmetric. 

Let D = (X1, X2, ...,Xn) where X i’ s are independently id following MOETL( ,  , 

σ) distribution given by (3), then the log likelihood function is obtained as 

LL (       )  =  -nlog   +nlog 

(
  

   
)+∑ (
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=  -nlog  +nlog (
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  Sl+  Sr
 

    (3.2) 

Where Sl =∑   (        )  and Sr =∑   (        )   

First by fixing σ and solving the equations formed by equating the partial 

derivatives of the log likelihood function with respect to   and   to zero, we 
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obtain the maximum likelihood estimates of   and   and then estimating σ by 

iteration. The ML estimates of   and   are 
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 (3.3) 
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3.2 Method of Moments  

By equating the population and sample moments obtained from (2.8), we get the 

moment estimates of β, θ and σ are 
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4. Marshall-Olkin Generalized Esscher Transformed Laplace 

Processes 

Autoregressive models with non-Gaussian marginal distribution have received a 

tremendous attention in the recent two decades. Since the fundamental frame 

work of Gaver and Lewis (1980), various authors developed autoregressive 

models with non-Gaussian marginal distribution due to the wide applications of 

such models in real life situations. Lawrence and Lewis (1981,1985),  Dewald 

and Lewis (1985), Anderson and Arnold (1993) and Jayakumar and Pillai (1993), 

Dais George, et al. (2016) developed autoregressive models with different non-

Gaussian marginal distributions. Here we develop an auto-regressive model with 

Marshall-Olkin generalized Esscher transformed Laplace distribution as 

marginal. Consider a first order auto-regressive (AR (1)) model defined by the 

structural relationship, 

Xn ={
                     

 

 

                     
 

 

 (4.1) 
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where β > 1 and {εn} is a sequence of independent and identically distributed 

random variables. This model is equivalent to the autoregressive model discussed 

in Lawrance and Lewis (1985).  

Theorem:  

Consider {Xn, n ≥ 1} given by 

Xn ={
                     

 

 

                     
 

 

 (4.2) 

where β > 1 and {εn} is a sequence of independent and identically distributed 

random variables.  

A necessary and sufficient condition that {Xn} is a stationary process with ETL 

(θ, σ) marginal is that {εn} is distributed as MOGETL (β, θ, σ). 

 Proof: If  Xn (t) is the characteristic function of {Xn}, by (4.2), 
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So that under stationarity assumption, we have 
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Substituting this (4.5) in (4.4) and simplifying, we get 
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Hence εn   MOET L (β, θ, σ). Conversely, if {εn} is a sequence of independently 

and identically distributed random variables and X0   ET L(θ, σ) then from (4.3) 

when n = 1 we have 
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4.1 Bivariate Process of (Xn, Xn+1) 

The joint characteristic function (Xn, Xn+1) in the autoregressive model is 

 Xn,Xn+1 (t1, t2) = E  e
(it

1
Xn+it
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This process is not time reversible. 

Since υXn,Xn+1 (t1, t2)   υXn,Xn+1 (t2, t1) . 

Therefore Xn is stationary with Xn   ET L (θ, σ) and  n   ET L (β, θ, σ). 

We have 
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Then E[Xn+1|Xn = x] = (1 − 
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The covariance between Xn and Xn−k is obtained on considering the 

representation (4.2) and simple computation 

Cov (Xn, Xn − k)   =   (    
 

 
 )      (         ) (4.8) 

Hence the autocorrelation function of the process is given by ρ(h) = (    
 

 
 ) . 

4.2 Extension to Higher Order Processes 

Now consider the k 
th
 order autoregressive model constructed by Lawrence and 

Lewis (1981) with structure 

Xn =

{
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where ∑   
 
   =1, 0 <  < 1, i = 0, 1, 2, ..., k and { n} is a sequence of iid 

MOGETL (β, θ, σ) independent of {Xn, Xn−1, ..., Xn−2}. In terms of 

characteristic function, (4.8) can be written as  

φXn(t) = P0φsn (t) + P1φXn−1 (t)φsn (t)+ P2φXn−2 (t)φsn (t) + ... + PkφXn−k (t)φsn (t),

 (4.9) 

Assuming stationarity, we get 

 ε( )       
  ( )

  (   )  ( )
 (4.10) 

This shows that the previous results in this section can be applied in higher order 

cases also. 

Sample Path Behavior 

The Sample path behavior of MOGETL (β, θ, σ) distribution is studied for 

various values of β, θ and σ and it is give in Figure 4. Sample paths of MOGETL 

(β, θ, σ) distribution for 

(a) θ  =  0.6, σ  = 2, β = 1.5, (b) θ = −0.6, σ = 2, β = 1.5(c) θ = 0.9, σ = 2,  

β = 1.2, (d) θ = −0.9,σ = 2, β = 1.2 (e) θ =−0.9, σ = 2, β = 1.5, and  

(f) θ = 0.9, σ = 2, β =1.5. 

Figure 4.3 (a) Figure 4.3 (b) 
 

 
Figure 4.3 (c) Figure 4.3 (d) 
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Figure 4.3 (e) Figure 4.3 (f) 

 

  

 
5. Fitting a Real Data to the Model 

Now we consider the real data application of MOGETL (β, θ, σ) distribution. In 

this study we use a secondary data, which is the ordered remission times (in 

months) of a random sample of 142 bladder cancer patients reported in Lee and 

Wang (2003). It being a time series data, we identify the time series model for the 

data. For that, we have to estimate the value of ρ using least square estimation. 

The least squares estimator from the real data is 

 ̂    
∑       

 
   

∑     
  

   

                 

In order to find the distribution of our data, we need to first find the distribution 

of our error terms.  

Therefore, we solve for  ̂, 

  ̂=Xk−ρ̂Xk−1. 

The time series plot of this stationary data is given in Figure 5. 

Figure 5: Time series plot of the stationary data. 
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The correlogram and the PACF graph of the stationary data are given Figure 6. 

 
Figure 6. (a)The ACF plot Figure 6. (b) The PACF plot 
 

 

  
The decaying pattern of the ACF and the single large spike at lag 1 in the 

sample PACF suggests an AR (1) model. This time series data is modeled by 

AR (1) with MOGETL marginal distribution. It can be justified by fitting 

MOGETL distribution to the error terms. The histogram of the error terms is 

shown in Figure 7. 
 

Figure 7: Histogram of the observed data. 

 

 

The figure resembles the shape of the graph of MOGETL distribution given in 

Figure 2.  
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We estimate the parameters of the distribution from the data and it is obtained as 

βˆ = 1.68762, ˆθ = 0.79325 and ˆσ = 1.26501. The frequency curve of the 

distribution is superimposed in the histogram and is presented in Figure 8. 

 
Figure 8: Embedded Frequency polygon of the observed data. 

 

 

From the Figure it is clear that the Marshall-Olkin generalized Esscher 

transformed Laplace distribution is a good fit for this data. Also we calculate the 

value of K-S statistic and it is obtained as 0.049074. So we can conclude that 

MOGETL distribution is suitable for modeling the data on remission times of 

bladder cancer patients. 

6. Kumaraswamy Marshall-Olkin Generalized EsscherTransformed 

Laplace Distribution 

The cumulative distribution function with pdf of Marshall-Olkin generalized 

Esscher transformed Laplace Distribution is (3.1). Then here we introduce Kw-G 

distribution with cumulative distribution function and pdf. 
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Here the parameters, a > 0 and b > 0 introduce asymmetry and heavier tails in the 

baseline distribution. If a = b = 1, the pdf reduces to the Marshall-Olkin 

generalized Esscher transformed Laplace Distribution. Survival function, 
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Hazard rate function(hrf): 
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 (6.4) 

The probability density plots of KMOGETL distribution is given in figure9. 

Densities of Kumaraswamy Marshall Olkin Generalized Esscher transformed 

Laplace distribution for  

(a)  a = 0.5, b = .9, β = 5.2, σ = 0.23 and θ = 0.3, 0.5, −0.3, −0.5 (b) a = 0.5, b = .9,  

θ = 0.3, σ = 0.23 and β = 3.2, 5.2, 8.2, 11.2 (c) a = 0.5, b = .9, β = 5.2, θ = 0.3 

and σ = 0.23, 0.53,  0.93, 1.2 (d) θ = 0.3, b = .9, β = 5.2, σ = 0.23 and a = 0.5, 

1.5, 2.5, 3.5 (e) a = 1.2, 2.2, 3.2, 4.2,  θ = 0.3,  β = 5.2, σ = 0.23 and b = 1.23, 

2.35, 3.6, 4.9 (f) a = 10, θ = 0.3, β = 5.2, σ = 0.23 and  b = 0.5, 1.2, 1.5, 1.9. 
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6.  Conclusion 

In this paper, we introduced the Marshall-Olkin generalized Esscher transformed 

Laplace distribution and studied its properties. We also developed first order 

autoregressive processes with this distribution as marginal and it is extended to 

higher order. We identify the time series model of the real data on remission 

times of bladder cancer patients and it is obtained as an autoregressive model of 

order one with Marshall-Olkin generalized Esscher transformed Laplace 

marginal distribution. We also justify that the marginal distribution is Marshall-

Olkin generalized Esscher transformed Laplace using Kolmogorov-Smirnov 

statistical test. For various values of β, MOGETL distribution provides more 

flexibility, allowing for asymmetry, peakedness and tail heaviness so that it can 

be used as an alternative to various asymmetric and heavy-tailed distributions. It 

can even be used for modeling left heavy-tailed and right heavy-tailed 

distributions by adjusting β. 
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