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ABSTRACT 

Competing risk situations occur when the systems/subjects under study are 

subjected to more than one cause of failure. In the present study, we 

propose Type-II hybrid censored competing risk analysis with masked 

system failure time data. It is assumed that the lifetime distribution of 

competing causes of failures follow Lindley distribution. We derive 

maximum likelihood and Bayes estimates of the model parameters. We 

also provide asymptotic and two bootstrap (boot-p and boot-t) confidence 

intervals of the model parameters. Markov Chain Monte Carlo technique 

such as Gibbs sampler is employed for Bayesian estimation. A simulation 

study is conducted to check the performances of the considered estimation 

methods. A masked competing risk real dataset is analyzed for illustrative 

purpose. 

1. Introduction 

The model for failure data in a life testing experiment of a multi-component 

system where system failure occurs as soon as anyone of its component fails is 

known as the competing risk model. In this regard, the components are connected 

in a series system. In the competing risk analysis, every unit or item can 

experience many risk factors until the unit is either failed or censored. Obtaining 

failure data under competing risk analysis are very abundant in the field of 

biomedical, engineering and life sciences in terms of various possible risk factors 

of life testing units observed for an experiment. The following are some real life 

examples related to competing risk data. For biomedical data, a patient suffers 

from breast cancer may also suffer from heart disease and other causes. The 
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effect of other causes may play an important role in the survival of patient. For 

engineering data, computer system failure can occur as soon as anyone of the 

motherboard, disk drives or power supply stop functioning.  

In competing risk analysis, we also often encounter the situation when for a given 

subset of items, the true causes of failure belong to only a subgroup of the causes 

and cannot be uniquely identified. The failure data obtained from these items 

generally termed as masked failure data. However, dealing with masked system 

failure data, a second stage analysis may be conducted to find an exact cause of 

failure. But second stage analysis takes more time and tends to be more costly. 

So, one may consider some masked failure data for study.  

The analysis of masking with competing risk data have been studied by many 

authors assuming different lifetime distributions for competing causes of failures. 

Miyawaka (1984) obtained the maximum likelihood estimators of two-

component series system of exponential lifetime distribution by using masked 

data. Craiu and Reiser (2006) discussed inferences for the dependent competing 

risks model with masked causes of failure. The study in Sen et al. (2010) dealt 

with the Bayesian approach to competing risk analysis with masked causes of 

death. Basu (2009) gave inferences of competing risk analysis in the presence of 

masked failure data. Xu and Tang (2009) dealt with Pareto distribution for 

performing the Bayesian analysis of masked data. Kumar et al. (2014) considered 

Bayesian estimation of progressive censored masked lifetime data from Rayleigh 

distribution. The study in Panwar et al. (2015) dealt with the parameter 

estimation of inverse Rayleigh distribution under competing risk model for 

masked data.  

Further, in reliability/survival analysis, obtaining failure data is very expensive 

and time consuming, and hence censoring is frequently used in life testing 

experiment. Type-II hybrid censoring scheme introduced by Childs et al. (2003) 

is widely used in reliability/survival analysis due to its special feature that it 

assured at least some failures before the termination of the experiment. For more 

details on Type-II Hybrid censoring scheme, one may refer (Banerjee and Kundu 

2008; Balakrishnan and Kundu 2013; Bhattacharya et al. 2014; Singh et al. 2014; 

Koley et al. 2017; Singh and Goel 2018).  
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Although several distributions have been considered to draw inferences on 

competitive risk analysis using masked data to the best of our knowledge, no 

study has demonstrated competitive risk analysis with masked system failure data 

under the Type-II hybrid censoring scheme with the Lindley distribution. The 

Lindley distribution was originally proposed by Lindley (1958, 1965) as a 

mixture of exponential and gamma distributions, has been used by many authors 

in various fields of life testing experiments like competing risk analysis, stress-

strength reliability analysis, load-sharing scenario, actuarial sciences etc. due to 

its time dependent failure rate. Ghitany  et al. (2008) explored the properties of 

Lindley distribution and showed it as a better lifetime model as compared to the 

exponential distribution. Mazucheli and Achcar (2011) studied Lindley 

distribution under competing risk framework. Krishna and Kumar (2011) 

proposed the estimation of the parameters of Lindley distribution with 

progressive Type-II censoring scheme. Singh and Gupta (2012) analysed k-

component load-sharing parallel system model assuming each component 

lifetime distribution as Lindley distribution. Gupta and Singh (2013) also derived 

parameter estimation of Lindley distribution with hybrid censored data. Dube  

et al. (2016) studied the progressive first failure censoring with Lindley 

distribution. Wang and Li (2019) engaged ML and Bayesian procedures for 

demonstrating partially observed causes of failure in the presence of generalized 

progressively hybrid censored data. Recently, Rai et al. (2021) analysed the 

masked data with Lindley failure model.    

In the light of above considerations, the present study is focused on the analysis 

of competing risk model with masked system failure data under Type-II hybrid 

censoring scheme. It is assumed that the lifetime of each competing cause of 

failures follows Lindley distribution. The rest of the study is organized as 

follows. In section 2, we present the notations used for this study and describe the 

model. Section 3 contains the maximum likelihood estimation of the model 

parameters. In section 4, we derived asymptotic and two bootstrap confidence 

intervals of the model parameters. Thereafter, using Gibbs sampler, one of the 

Markov Chain Monte Carlo (MCMC) technique, Bayesian estimation of the 

model parameters is performed by assuming gamma and non-informative priors 

in section 5. For highlighting the theoretical developments, a simulation study is 
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carried out in section 6. For practical illustrations, we present a real data analysis 

in section 7. Finally, we conclude our findings in section 8.    

2. Notations and Model Description 

2.1 Notations 

Without loss of generality, it is assumed that the system under study experiences 

only two competing causes of failures. The following notations have been used in 

this study. 

n   The number of systems under consideration on test. 

jr The number of observed system failures due to cause j, j = 1, 2. 

12r The number of observed system failures due to masked causes of failures.  

jiT Lifetime of the 
thj component of the 

thi system, for j=1,2 and i 1,2,....,n.  

 i 1i 2iZ min T ,T . 

i:nZ  thi Ordered statistic of  iZ ,i 1,2,....,n.  

 R = Pre-fixed integer. 

 T = Pre-fixed time point. 

 R:nU max Z ,T . 

r  The number of system failures before U . 

1 2 12r r r r   . 

i  A set containing the corresponding cause of failure of the 
thi  ordered 

system. 

    1:n 1 r:n rZ , ,......, Z ,  = The observed data before the termination of test. 

2.2 Model Description 

Suppose that n systems, each consisting of two components are put on test. In 

each system, the components are connected in series. Therefore, the system can 

fail due to any of its components failure. Let jiT ; j 1,2 ;i 1,2,...,n  be the 

lifetime of 
thj  component of the 

thi  system, independently follows Lindley 
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distribution with parameter j i.e.  ji jT ~ Lindley  for i 1,2,....n; j 1,2  . 

The probability density function (pdf) of 
jiT is given by 
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Also, the hazard rate (hrf) and the survival function (sf) of 
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Since, the random variables 
'

jiT s are assumed to be independent, and let iZ  

denotes the observed lifetime of the i
th
 system where  i 1i 2iZ min T ,T , then the 

pdf of iZ  is as follows: 
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   (2.2.3) 

In the competing risk analysis with masked causes of failures, one can observe 

the following three different structures 

1. A system fails and we observe both, the time to failure and cause of failure. 

2. A system fails and we observe only time to failure but not the cause of failure 

i.e. masking arises in the system. 

3. A system survived up to the end of the experiment i.e. censored observation. 

Now, suppose 1:n 2:n n:nZ Z ...... Z   denotes the ordered values of 

1 2 nZ ,Z ,....,Z and the test is terminated at time point  R:nU max Z ,T  where 

R n is the pre-fixed integer and T is the pre-fixed time point. Let r be the 

number of observed system failures up to time point U. Also, assume that i is a 

set of system’s components containing the corresponding cause of system failure. 

Note that, if i  is not singleton, then the corresponding cause of failure is 

masked. Thus, under Type-II hybrid censoring scheme, we have the following 

observations at the end of the experiment. 
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Case I:     1:n 1 R:n RZ , ,......, Z ,  if R:nT Z  

Case II:     1:n 1 d:n dZ , ,......, Z ,   if R:nZ T  and d:n d 1:nZ T Z    for 

d R,......n  

Case III:     1:n 1 n:n n n:nZ , ,......, Z , if Z T.    

3. Maximum Likelihood Estimation 

The Likelihood function of the data point  i:n iZ , for i 1,2,....r is given by 

       
i

n r

j jr

1 2 i i i j i k k

ji 1 k 1 k 1
k j k j

L , z , f z . S z S U



  
 

  
        
  
  
  

    (3.1) 

Let, out of the r observed system failures, 1r  and 2r respectively denote the 

number of system failures due to cause 1 and cause 2. Additionally, 12r  be the 

number of failed systems due to masked causes of failures. Apparently, 

1 2 12r r r r   . Now, the likelihood function given in equation (3.1) can be 

rewritten as 
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 (3.2) 

In view of equations (2.2.1), (2.2.2), and (3.2) we get the following form of the 

likelihood function 
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Where,

R ; for case I

r d; for case II ,

n; for case III
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The log likelihood function is 
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On differentiating equation (3.4) partially with respect to 1 2,  and equating to 

zero, one gets 
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The maximum likelihood estimators (MLEs) of the model parameters 1  and 2

can be obtained on solving the non-linear equations (3.5) and (3.6) 

simultaneously, but these equations have multidimensional complexity and 

cannot be solve directly. However, one can use any of the optimization functions 

of R-software like nlm(), mle(), maxLik() to obtain 
1̂ and

2̂ . 

4. Confidence Intervals 

Here, we propose to use two alternative confidence intervals for the parameters 

1  and 2  namely asymptotic confidence intervals and bootstrap confidence 

intervals. 

4.1 Asymptotic Confidence Intervals 

Here, we develop asymptotic confidence intervals for the parameters 1  and 2  
by using the asymptotic normality of MLEs for which we first obtain the 

observed Fisher information matrix  ˆI  given as 

  11 12
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A A
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The expressions of the second partial derivatives of the log likelihood function 
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Now, the  100 1 %   asymptotic confidence intervals of 1  and 2  
can be 

constructed as  j jj
2

ˆ ˆZ I ; j 1,2.     Here, / 2z  is the upper 
th( / 2)

percentile of standard normal distribution and jjI is the (j,j)
th
 element of the 

inverse of Fisher information matrix. 

4.2 Bootstrap Confidence Intervals 

This subsection is concerned with two parametric bootstrap confidence intervals 

namely percentile bootstrap (boot-p) and bootstrap-t (boot-t) confidence intervals 

of the unknown parameters. For the construction of bootstrap confidence 

intervals, the following steps are made. 

Algorithm for boot-p method: 

1. Based on the original sample  1 2 rz z ,z ,......z calculate MLEs of the 

model parameters, say 1̂ and 2̂ . 
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2. Under the same sampling framework of competing risk analysis with Type-II 

hybrid censored masked data, simulate sample  * * * *

1 2 rz z ,z ,......z from the 

underlined Lindley distribution. 

3. Compute the MLEs of 1 and 2 using 
*z denoted by 

*

1̂ and
*

2̂ . 

4. Repeat step 2 and step 3, B times to obtain B such Bootstrap estimates.  

5. Arrange              * * * * * *

1 1 1 2 1 B 2 1 2 2 2 B
ˆ ˆ ˆ ˆ ˆ ˆ, ,......, , , ,.........,      in ascending order. 

6. A two sided  100 1 %  percentile bootstrap (boot-p) confidence 

intervals for 1 and 2 are 
    * 1 2 B* B 2

1 1
ˆ ˆ,

     and
    * 1 2 B* B 2

2 2
ˆ ˆ,

     . 

7. Lastly, the percentile bootstrap (boot-p) estimates of 1 , 2 can be 

respectively obtained as 
 

B
* *

1b 1 l
l 1

1ˆ
B 

   and
 

B
* *

2b 2 l
l 1

1ˆ
B 

   . 

Algorithm for boot-t method: 

1. Using the above boot-p sample 
*z , determine the statistic

 

 

*

1 1*

1
*

1

ˆ ˆ

T
ˆV

 




 

and
 

 

*

2 2*

2
*

2

ˆ ˆ

T
ˆV

 




, where  *

1
ˆV   and  *

2
ˆV   are the asymptotic variances 

of 
*

1̂ and
*

2̂ respectively which can be obtained using Fisher information 

matrix. 

2. Repeat step 1 B times. 

3. Arrange 
     
* * *

1 1 1 2 1 B
T ,T ,.....T  and 

     
* * *

2 1 2 2 2 B
T ,T ,.....T  in ascending order. 

4. The  100 1 %   boot-t confidence intervals for 1 and 2 are 

respectively given by
       * B 1 2 * B 2

1 1 1 1 1 1
ˆ ˆ ˆ ˆT V , T V

              
 

and

       * B 1 2 * B 2

2 2 2 2 2 2
ˆ ˆ ˆ ˆT V , T V

              
 

.  

5. Bayesian estimation 

For Bayesian estimation of the model parameters 1 and 2 , it is assumed that 

the model parameters are the random variables, and follow independent gamma 

prior distributions as: 
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In view of the above priors and the likelihood function in (3.3), the joint posterior 

distribution of 1 and 2 given data is 
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For obtaining Bayes estimates of 1  and 2  under squared error loss function

* * 2L( , ) ( )     , one needs to obtain marginal posterior expectations which 

are not possible to determine analytically by using (5.3). Therefore, we use Gibbs 

sampling approach, one of the Markov Chain Monte Carlo (MCMC) technique to 

compute approximate Bayes estimates of the model parameters. This approach 

was given by Geman and Geman (1984). For implementing Gibbs sampler, the 

full conditional posterior pdfs of the model parameters are given by 
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 (5.5) 

Gibbs algorithm 

Using equations (5.4) and (5.5), we generate the Gibbs sequence 

     0 0 1 1 K K

1 2 1 2 1 2, , , ,........, ,      involving the following steps: 

1. Start with the initial values of 1 and 2  say  0 0

1 2,  . 

2. Generate 
1

1  from  0

1 2 i i, z ,    . 

3. Generate 
1

2  from  1

2 1 i i, z ,    . 

4. Repeat the steps 2-3,K times. To nullify the effects of the starting values of 

the parameters, we record the parametric values    N 1 N 1 K K

1 2 1 2, ,......., ,    

after discarding N burn-in period draws.   

5. Bayes estimates of the parameters 1 , 2 and corresponding variances are 

taken to be the means and variances of generated values 1 and 2  

respectively. 

6. Arrange  N 1 N 2 K

1 1 1, ,.......,    and  N 1 N 2 K

2 2 2, ,.......,    in ascending order. 

Then by using the method given by Chen and Shao (1999),we construct the 

HPD intervals of 1 and 2  

Similarly, we can obtain the posterior statistics via non-informative priors by 

setting all gamma priors parameters equal to zero i.e. 1 1 2 2a b 0, a b 0.   

Also, note that the simulation in the steps 2 and 3 is not easy due to complex 

posterior densities of 1  and 2 . Therefore, we use Metropolis-Hastings 

algorithm (Metropolis and Ulam 1949; Hastings 1970), to simulate parametric 

draws from these densities of 1  and 2 .  
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6. Simulation Study 

Here, we present some illustrations based on simulation study for comparing the 

performances of different methods of estimation of model parameters under 

Type-II hybrid censoring schemes for varying sample sizes. In this study, we 

have used the following algorithms for simulating the data.  

Algorithm for Sample Generation 

 First, we take model parameters 1 22, 1     and generate Lindley lifetimes 

for the competing causes of failures 1 and 2 using the function LindleyR() of 

the R software. 

 In competing risk analysis, minimum of the failure time of the components is 

the failure time of the system and the component corresponds to the 

minimum failure time taken to be the cause of failure. From these 

observations, we then generate random samples using Type-II hybrid 

censoring scheme by considering different values of R and T.  

 Further, under different levels of masking, we get the final form of the 

competing risk data with missing cause of failure.  

 Thereafter, we repeat the process 1000 times and acquire the average 

estimates with respective average SE/PSEs and average interval widths of the 

confidence, bootstrap and HPD credible intervals along with their coverage 

probabilities (CPs).  

In this study, we use different values of n, R and T as n=30, 50, 100, 

R=0.80n, 0.60n, T=0.4, 0.7 with different masking levels such as 10%, 20%, 

30%.  

Algorithm for Classical Estimation 

 In maximum likelihood estimation, we utilize the function maxLik() of R 

software for obtaining the MLE of the model parameters 1 and 2 with the 

corresponding standard errors (SE).  

 The confidence intervals (CI) and two bootstrap (boot-p and boot-t) 

confidence intervals with 3000 bootstrap replications are also computed.  

 The convergence of the classical parameters has been checked through the 

various plots of Lindley distribution for the parameters 1 and 2 . We have 

plot the pdf, cumulative distribution function (cdf), survival function (SF) 

and hazard rate function (HRF) shown in Fig. 1. 
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Algorithm for Bayesian Estimation 

 In Bayesian setup, we took 20,000 posterior samples of the model parameters 

1 and 2 using M-H algorithm within Gibbs sampler and obtain Bayes 

estimates of model parameters 1  and 2  along with their posterior standard 

errors (PSE) and highest posterior density (HPD) credible intervals.  

 The convergence of MCMC chains after discarding suitable burn-in-period 

has been checked through trace and auto correlation plots.  

 Then, we plot the posterior densities of the model parameters 1 and 2

shown in Fig. 2. In each case, the coverage probabilities (CPs) of the 

intervals have also been obtained.  

All the simulation results are outlined in Table 1-6. We use R software to 

develop the programs of the simulation study. From Table 1-6, we observe 

that- 

 All the method of estimation satisfactorily estimates the parameters in terms 

of average SEs/PSEs and average interval widths associated with their 

respective CPs of the CI/HPD credible intervals. 

 The performance of average SEs/PSEs of estimates improves as any one of 

the n, R, T increases. Also the estimated errors tend to decrease as we 

decrease the masking level. The same trend is observed in case of average 

widths of CI/HPD credible intervals. 

 The boot-p estimation and Bayes estimation with non-informative prior’s 

results are similar to the maximum likelihood estimation in terms of 

respective average SEs and average PSEs. 

 Bayes estimation yields more efficient estimates as we look over the 

maximum likelihood estimation and boot-p estimation in terms of average 

SEs/PSEs and average interval widths along with their CPs of the CI/HPD 

credible intervals.   

 Bayes estimation with gamma priors gives best results as compared to all 

other methods of estimation. 

  7. Real Data Analysis 

Here, we demonstrate the real life applicability of the proposed methodology. We 

consider the real life data which was originally proposed by Nelson (1982) and 

based on conducting the lifetimes of electric appliances. In this dataset, the 

lifetimes of electric appliances are considered to be the complete use of cycles of 
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appliance until the appliance got failed. Initially, there were 18 ways in which 

appliance could fail. This data has also been previously studied by Tomer et al. 

(2014). They analyzed the data after some modifications for presenting the 

example of masked data. They considered the data to the two causes of failures 

and introduced 20% masking. The considered data is as follows:  

Mode of Failure    Appliance failure times  

Cause-1 2223, 2400, 4329, 1167, 3112, 2471, 1925, 3214, 1990, 3034, 

2551,6976, 3478 

Cause-2 958, 35, 170, 2831, 13403, 2702, 6367, 708, 2451, 381, 1062, 

1594,2761, 329, 49, 2565   

Masked 2568, 3059, 11, 3034, 3504, 7846, 2327 

We divide each observation of the dataset by 1000 and checked whether the 

Lindley distribution fits well the data or not. For this purpose, we calculate 

Kolmogorov-Smirnov (K-S) statistics along with corresponding p-values. The K-

S statistics with the respective p-value for cause-1 and cause-2 respectively come 

out to be 0.2960 (0.1665) and 0.1985 (0.4924). These values clearly indicate that 

the Lindley distribution can be considered as the failure time distribution for 

cause-1 and cause-2. Further, for analyzing this data under Type-II hybrid 

censoring scheme, we artificially formed 20% censoring scheme by assuming R 

= 29 and T = 3 from the complete data with masked causes of failures.  

Now, assuming Lindley distribution as the failure time distribution of the 

competing causes of failures, we obtain estimates of the model parameters using 

maximum likelihood estimation and Bayes method of estimation with gamma 

and non-informative priors. The maximum likelihood estimates of the model 

parameters 1 and 2 turn out to be 0.3107 and 0.4839 with the respective 

standard errors 0.0662 and 0.0776. Bayes estimates with gamma and non-

informative priors of ( 1 , 2 ) respectively are (0.4185, 0.5942) and (0.3202, 

0.4611) with posterior standard errors (0.0475, 0.0579) and (0.0763, 0.0831). 

The 95% confidence intervals of the parameters 1 and 2 are (0.1809, 0.4406) 

and (0.3318, 0.6361). The 95% HPD credible intervals of the parameters 1 and
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2 with gamma and non-informative priors are (0.3211, 0.4927), (0.4911, 

0.6910) and (0.1547, 0.4552), (0.3300, 0.6449) respectively.   

8. Concluding Remarks 

In this article, we present classical and Bayesian estimation of Type-II hybrid 

censored competing risk data with masked causes of failures. We assume that the 

failure time distribution of competing causes of failures is Lindley distribution. In 

classical setup, we obtain maximum likelihood estimates of the model parameters 

along with their estimated standard errors. We also provide the asymptotic and 

two bootstrap confidence intervals of the model parameters. Thereafter, we 

obtain Bayes estimates along with HPD credible intervals by assuming gamma 

and non-informative priors of the model parameters. Since Bayes estimates are 

not found in the closed form expressions, therefore, we use MCMC technique 

such as Gibbs sampler for obtaining Bayes estimates of the model parameters. 

The efficiency of the above proposed methods of estimation are examined based 

on various sample sizes with different combinations of Type-II hybrid censoring 

parameters R and T under different masking levels. For practical implementation 

of the above methodology, a masked competing risk real data analysis is 

provided. 
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Table 1: Various average estimates with respective average SE/PSE for 

1 22, 1     at different masking level for n=30 under Type-II hybrid 

censoring. 

Average 

Estimates 

[Average 

SE/PSE] 

Maski

ng 

Level 

R=24, T=0.7 R=18, T=0.4 

1θ  2θ  1θ  2θ  

MLEs [SE] 10% 1.9353 

[0.3789] 

1.1264 

[0.2946] 

2.0196 

[0.4439] 

1.1335 

[0.3378] 

20% 2.0316 

[0.4002] 

1.0351 

[0.2959] 

2.0462 

[0.4629] 

1.0936 

[0.3508] 

30% 2.1330 

[0.3917] 

0.8927 

[0.2872] 

2.1252 

[0.4538] 

0.9509 

[0.3408] 

Boot-p [SE] 10% 1.9910 

[0.3869] 

1.1449 

[0.2984] 

2.0248 

[0.4446] 

1.1920 

[0.3458] 

20% 2.0987 

[0.4115] 

1.0727 

[0.3027] 

2.0479 

[0.4584] 

1.0861 

[0.3458] 

30% 2.1860 

[0.4032] 

0.9606 

[0.2905] 

2.1294 

[0.4537] 

1.0022 

[0.3476] 

Bayes with 

Gamma 

Priors [PSE] 

10% 1.9892 

[0.1319] 

1.0120 

[0.0940] 

1.9971 

[0.1333] 

1.0104 

[0.0956] 

20% 2.0009 

[0.1321] 

1.0004 

[0.0936] 

2.0009 

[0.1341] 

1.0049 

[0.0952] 

30% 2.0145 

[0.1331] 

0.9838 

[0.0928] 

2.0124 

[0.1353] 

0.9901 

[0.0942] 

Bayes with 

Non-

Informative 

Priors [PSE] 

10% 2.0122 

[0.3900] 

1.1111 

[0.2966] 

1.8921 

[0.4239] 

1.1796 

[0.3383] 

20% 2.0552 

[0.4015] 

1.0464 

[0.3003] 

1.8822 

[0.4332] 

1.1368 

[0.3474] 

30% 2.0697 

[0.4147] 

0.9797 

[0.2994] 

2.1085 

[0.4814] 

0.9927 

[0.3508] 
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Table 2: Various average CI/HPD intervals widths along with their CPs for 

1 22, 1     at different masking level for n=30 under Type-II hybrid 

censoring. 

Average 

CI/HPD 

intervals 

Masking 

Level 

R=24, T=0.7 R=18, T=0.4 

1θ  2θ  1θ  2θ  

CI 10% 1.4856  

[0.96] 

1.1550  

[0.98] 

1.7401  

[0.95] 

1.3245  

[0.97] 

20% 1.5688  

[0.95] 

1.1601  

[0.95] 

1.8147  

[0.97] 

1.3751  

[0.96] 

30% 1.5357  

[0.96] 

1.1783  

[0.85] 

1.7788  

[0.91] 

1.3186 

[0.86] 

Boot-p CI 10% 1.5708  

[0.99] 

1.2214  

[1.00] 

1.7981  

[0.98] 

1.4035  

[1.00] 

20% 1.7425 [ 

1.00] 

1.3112  

[1.00] 

1.8845  

[0.99] 

1.4810  

[1.00] 

30% 1.9003  

[0.99] 

1.3101  

[1.00] 

2.1810  

[1.00] 

1.7255  

[1.00] 

Boot-t CI 10% 1.5764  

[0.85] 

1.3020  

[0.87] 

1.9224  

[0.90] 

1.4934  

[0.75] 

20% 1.7445  

[0.87] 

1.3302  

[0.85] 

1.9687  

[0.90] 

1.6162  

[0.74] 

30% 2.0268  

[0.87] 

1.4668  

[0.87] 

2.5715  

[0.80] 

1.5968  

[0.76] 

HPD with 

Gamma 

priors 

10% 0.5057  

[1.00] 

0.3589  

[1.00] 

0.5100  

[1.00] 

0.3643  

[1.00] 

20% 0.5064  

[1.00] 

0.3572  

[1.00] 

0.5130  

[1.00] 

0.3635  

[1.00] 

30% 0.5106  

[1.00] 

0.3550  

[1.00] 

0.5180  

[1.00] 

0.3610  

[1.00] 

HPD with 

Non-

Informative 

priors 

10% 1.4940  

[0.93] 

1.1246  

[0.93] 

1.6224  

[0.89] 

1.2794  

[0.95] 

20% 1.5453  

[0.95] 

1.1304  

[0.94] 

1.6609  

[0.86] 

1.3056  

[0.92] 

30% 1.5941  

[0.92] 

1.1302  

[0.88] 

1.8470  

[0.94] 

1.3054  

[0.91] 
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Table 3: Various average estimates with respective average SE/PSE for 

1 22, 1     at different masking level for n=50 under Type-II hybrid 

censoring. 

Average 

Estimates 

[Average 

SE/PSE] 

Masking 

Level 

R=40, T=0.7 R=30, T=0.4 

1θ  2θ  1θ  2θ  

MLEs [SE] 10% 1.9612 

[0.2976] 

1.1157 

[0.2290] 

1.9347 

[0.3332] 

1.0926 

[0.2569] 

20% 2.0561 

[0.2963] 

0.9507 

[0.2038] 

2.0442 

[0.3453] 

0.9965 

[0.2480] 

30% 2.1345 

[0.3028] 

0.8965 

[0.1987] 

2.1670 

[0.3505] 

0.8960 

[0.2597] 

Boot-p [SE] 10% 1.9812 

[0.2968] 

1.0873 

[0.2242] 

1.9721 

[0.3384] 

1.1081 

[0.2601] 

20% 2.0343 

[0.2947] 

0.9836 

[0.2073] 

2.0873 

[0.3524] 

1.0277 

[0.2538] 

30% 2.1461 

[0.3045] 

0.9149 

[0.2009] 

2.0915 

[0.3580] 

0.9086 

[0.2567] 

Bayes with 

Gamma 

Priors 

[PSE] 

10% 1.9906 

[0.1266] 

1.0180 

[0.0909] 

1.9887 

[0.1305] 

1.0106 

[0.0929] 

20% 2.0097 

[0.1275] 

0.9873 

[0.0892] 

2.0016 

[0.1298] 

0.9948 

[0.0917] 

30% 2.0202 

[0.1280] 

0.9787 

[0.0895] 

2.0207 

[0.1311] 

0.9841 

[0.0917] 

Bayes with 

Non-

Informative 

Priors 

[PSE] 

10% 1.9087 

[0.2937] 

1.1305 

[0.2310] 

1.9747 

[0.3423] 

1.1099 

[0.2639] 

20% 2.0341 

[0.3031] 

0.9849 

[0.2274] 

2.0643 

[0.3619] 

1.0446 

[0.2690] 

30% 2.0605 

[0.3207] 

0.9452 

[0.2301] 

2.1768 

[0.3762] 

0.9578 

[0.2677] 
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Table 4: Various average CI/HPD intervals widthsalong with their CPsfor 

1 22, 1     at different masking level for n=50 under Type-II hybrid 

censoring. 

Average 

CI/HPD 

intervals 

Masking 

Level 

R=40, T=0.7 R=30, T=0.4 

1θ  2θ  1θ  2θ  

CI 10% 1.1669  

[0.94] 

0.7976  

[0.97] 

1.3064  

[0.92] 

1.0073  

[0.95] 

20% 1.1616  

[0.94] 

0.7992  

[0.87] 

1.3536  

[0.93] 

0.9723  

[0.89] 

30% 1.1872  

[0.96] 

0.7792  

[0.88] 

1.3742  

[0.98] 

0.9805  

[0.87] 

Boot-p CI 10% 1.1890  

[0.97] 

0.8191  

[1.00] 

1.3685  

[0.96] 

1.0741  

[1.00] 

20% 1.2142  

[0.99] 

0.8724  

[1.00] 

1.5066  

[1.00] 

1.1041  

[1.00] 

30% 1.2385  

[0.98] 

0.8765  

[0.97] 

1.5189  

[0.99] 

1.1091  

[1.00] 

Boot-t CI 10% 1.1837  

[0.85] 

0.8667  

[0.78] 

1.4327 

 [0.81] 

1.1466  

[0.73] 

20% 1.2633  

[0.90] 

0.8562  

[0.80] 

1.5761  

[0.90] 

1.1990  

[0.78] 

30% 1.2851  

[0.90] 

0.8725  

[0.78] 

1.7119  

[0.91] 

1.1116  

[0.75] 

HPD with 

Gamma priors 

10% 0.4853  

[1.00] 

0.3481  

[1.00] 

0.5021 

 [1.00] 

0.3551  

[1.00] 

20% 0.4894  

[1.00] 

0.3400  

[1.00] 

0.4957  

[1.00] 

0.3495  

[1.00] 

30% 0.4888  

[1.00] 

0.3414  

[1.00] 

0.5013  

[1.00] 

0.3522  

[1.00] 

HPD with 

Non-

Informative 

priors 

10% 1.1310  

[0.93] 

0.8115 

 [0.91] 

1.3212 

 [0.93] 

1.0055  

[0.94] 

20% 1.1739  

[0.94] 

0.8277  

[0.95] 

1.3971  

[0.92] 

1.0163  

[0.94] 

30% 1.2380  

[0.96] 

0.8682  

[0.88] 

1.4565  

[0.95] 

1.0042  

[0.87] 
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Table 5: Various average estimates with respective average SE/PSE for 

1 22, 1     at different masking level for n=100 under Type-II hybrid 

censoring. 

Average Estimates 

[Average SE/PSE] 

Masking 

Level 

R=80, T=0.7 R=60, T=0.4 

1θ  2θ  1θ  2θ  

MLEs [SE] 10% 1.9894 

[0.2092] 

1.0901 

[0.1463] 

1.9949 

[0.2391] 

1.0736 

[0.1682] 

20% 2.0743 

[0.2120] 

0.9916 

[0.1477] 

2.0614 

[0.2400] 

0.9750 

[0.1674] 

30% 2.0693 

[0.2090] 

0.9122 

[0.1494] 

2.1761 

[0.2492] 

0.9011 

[0.1682] 

Boot-p [SE] 10% 1.9404 

[0.2021] 

1.0449 

[0.1497] 

1.9863 

[0.2378] 

1.0791 

[0.1681] 

20% 2.0391 

[0.2080] 

0.9765 

[0.1451] 

2.0401 

[0.2374] 

0.9846 

[0.1671] 

30% 2.1474 

[0.2157] 

0.9080 

[0.1419] 

2.1031 

[0.2404] 

0.8951 

[0.1697] 

Bayes with 

Gamma Priors 

[PSE] 

10% 1.9934 

[0.1162] 

1.0259 

[0.0842] 

1.9969 

[0.1217] 

1.0169 

[0.0870] 

20% 2.0200 

[0.1174] 

0.9954 

[0.0824] 

2.0120 

[0.1211] 

0.9935 

[0.0856] 

30% 2.0173 

[0.1162] 

0.9710 

[0.0812] 

2.0430 

[0.1221] 

0.9746 

[0.0848] 

Bayes with Non-

Informative Priors 

[PSE] 

10% 1.9600 

[0.2079] 

1.0755 

[0.1557] 

1.9443 

[0.2380] 

1.1127 

[0.1842] 

20% 2.0387 

[0.2117] 

0.9653 

[0.1485] 

2.0642 

[0.2484] 

1.0073 

[0.1803] 

30% 2.0833 

[0.2149] 

0.9055 

[0.1461] 

2.0996 

[0.2574] 

0.9229 

[0.1801] 
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Table 6: Various average CI/HPD intervals widthsalong with their CPsfor 

1 22, 1     at different masking level for n=100 under Type-II hybrid 

censoring. 

Average CI/HPD 

intervals 

Masking 

Level 

R=80, T=0.7 R=60, T=0.4 

1θ  2θ  1θ  2θ  

CI 10% 0.8204  

[0.97] 

0.5128  

[0.93] 

0.9374  

[0.97] 

0.6486  

[0.97] 

20% 0.8311  

[0.93] 

0.5793  

[0.93] 

0.9408  

[0.97] 

0.6562  

[0.87] 

30% 0.8393  

[0.91] 

0.5704  

[0.86] 

0.9769  

[0.90] 

0.6397  

[0.87] 

Boot-p CI 10% 0.7873  

[0.97] 

0.5549  

[1.00] 

0.9193  

[0.98] 

0.6124  

[1.00] 

20% 0.8088  

[0.99] 

0.5606  

[0.99] 

0.9065  

[0.97] 

0.6483  

[1.00] 

30% 0.8193  

[0.95] 

0.5692  

[0.98] 

0.9344  

[0.98] 

0.6438  

[1.00] 

Boot-t CI 10% 0.7922  

[0.81] 

0.5639  

[0.79] 

0.9270  

[0.85] 

0.6136  

[0.72] 

20% 0.8200  

[0.79] 

0.5704  

[0.81] 

0.9376  

[0.77] 

0.6596  

[0.85] 

30% 0.8255  

[0.83] 

0.5773  

[0.72] 

0.9598  

[0.85] 

0.6494  

[0.70] 

HPD with 

Gamma priors 

10% 0.4434  

[1.00] 

0.3014  

[0.99] 

0.4653  
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Fig. 1 Plots for pdf, cdf, survival function, and hazard function of Lindley 

Distribution. 
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Fig. 2 Estimated Posterior density plots for the parameters 1 and 2 . 

 


