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ABSTRACT 

This paper addressed the two frequently used error diagnostics in multiple 

linear regression analysis namely Hadi’s influence measure and Andrew-

Pregibon statistic which were logically extended and generalized to the 

multivariate form denoted as Multivariate Hadi’s influence measure  2

p iH  

and Multivariate Andrew-Pregibon statistic  p iAP . The Proposed 

multivariate measures were used to identify the Potential Outliers and 

Influential Observations in multivariate linear regression analysis. For this, 

11 multivariate regression models were fitted and the multivariate  2

p iH ,

 p iAP  measures are utilized to scrutinize the residuals; results were 

exhibited along with the control charts.  

1. Introduction and Related Work 

Until the third quarter of the 20th century, to detect potentially critical 

observations Studentized residuals and the plot of the residuals were considered 

the most appropriate statistical methods. Behnken and Draper (1972) have 

explained that the estimated variance of the residuals includes pertinent 

information beyond that provided by plots of residuals or studentized residuals. 

They have also discussed the variances of residuals in several more complicated 

designs. Hoaglin and Welsh (1978) expressed, projection matrix known as the 

hat matrix contains this information and, together with the studentized residuals, 

provides a means of identifying exceptional data points. Cook (1977) has been 

the first to establish a simple measure, Di that incorporates information from the 
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X-space and Y-space used for assessing the influential observations in regression 

models. The problem of outliers or influential data in the multiple or multivariate 

linear regression setting has been thoroughly discussed regarding parametric 

regression models by the pioneers namely Cook (1977), Cook and Weisberg 

(1982), Belsey et al. (1980) and Chatterjee and Hadi (1988) respectively. In non-

parametric regression models, diagnostic results are quite rare. Among them, 

Eubank (1985), Silverman (1985), Thomas (1991), and Kim (1996) studied 

residuals, leverages, and several types of Cook’s distance in smoothing splines, 

and Kim and Kim (1998), Kim et al. (2001) proposed a type of Cook’s distance 

in kernel density estimation and local polynomial regression. Belsey et al. (1980) 

gave a suitable definition of influence after investigating the influential 

observations from early Cook’s measure to other various measures then. Cook’s 

statistical diagnostic measure is a simple, unifying and general approach for 

judging the local influence in statistical models. As far as the influence measures 

are concern in the literature, the procedures were designed to detect the influence 

of observations on a specific regression result. However, Hadi (1992), proposed a 

diagnostic measure called Hadi’s influence function to identify the overall 

potential influence which possesses several desirable properties that many of the 

frequently used diagnostics do not generally possess such as invariance to 

location and scale in the response variable, invariance to non-singular 

transformations of the explanatory variables, it is an additive function of 

measures of leverage and residual error, and it is monotonically increasing in the 

leverage values and the squared residuals. Diaz-Garcia and Gonalez-Farias 

(2004) modified the classical Cook’s distance with generalized Mahalanobis 

distance in the context of multivariate elliptical linear regression models and they 

also establish the exact distribution for identification of outlier data points. Using 

Mahalanobis distance, Jayakumar and Thomas (2013) proposed a procedure of 

clustering based on multivariate outlier detection. Using the relationship 

proposed by Weisberg (1980), Belsey et al. (1980); Jayakumar and Sulthan 

(2015; 2016; 2017) proposed an exact distribution of Cook’s distance used to 

evaluate the influential observations in multiple linear regression analysis. 

Further, they introduced a new method of regression clustering based on 

influential observations where the observations are treated as potential outliers. 

Lately, they established an exact distribution of Andre-Pregibon Statistic and 

evaluate influential observations in a multiple linear regression analysis, 

respectively. In this paper, the authors address two frequently used error 
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diagnostics in multiple linear regression analysis namely Hadi’s influence 

measure and Andrew-Pregibon statistic which were logically extended and 

generalized to the multivariate form and discussed in subsequent sections. 

                                               2.  Some Preliminaries 

The Multivariate linear regression model with random error is given by 

Y X E   
(2.1) 

where )( pXn
Y

)( qXn
X

 are the matrix of dependent and independent variables, )( pXq



 is the 

matrix of beta coefficients or partial regression coefficients and )( pXn
E

 is the 

residual matrix followed multivariate normal distribution N(0,  
E

p X p


) 

respectively, where rank  X q  and p q . The best linear unbiased estimate 

of )( pXq


 of the j

th
 regression is given as 

 
1

T

j jX X Y



 

(2.2) 

where 1,2,3 ,j p  

From (2.2), the estimate of   which is the same as an equation by equation least 

squares estimation. Note that iih  is the hat values of i
th
 observation or diagonal 

elements of the hat matrix ))(( '1' XXXXH   or prediction matrix play the 

same role as in multiple regression. Large values indicate that at least one 

component of the i
th
 observation may be an influential point in X-space. From 

(2.1), statisticians concentrate and give importance to the error diagnostics such 

as outlier detection, identification of leverage points and evaluation of influential 

observations. Several error diagnostics had been proposed in the past especially 

to scrutinize the residuals for multiple linear regression analysis and Hossain and 

Naik (1989) addressed the logical extension of the univariate diagnostics to the 

multivariate case. For a multivariate linear regression model, they generalized the 

internal studentized residual, external studentized residual in terms of Hoteling’s 

T-square statistic, Cook’s distance, Modified Cook’s distance, Welsch-Kuh 

distance, Co-variance ratio and Likelihood displacement or Likelihood distance. 

Similarly, Diaz-Garcia et al. (2007) studied the exact distributions of multivariate 

classical, modified cook’s distance to the multivariate elliptical linear regression 
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model. Several error diagnostics techniques were extended to the multivariate 

form and Hadi's influence measure, Andrew Pregibon statistic so far not yet 

addressed and generalized to the multivariate linear regression. The Multivariate 

extension of Hadi’s influence measure and Andrew Pregibon statistic is discussed 

in the following and subsequent sections. 

3.  Multivariate Extension of Hadi’s Influence Measure 

Hadi’s  2

iH   influence measure is an interesting technique based on the fact that 

potentially influential observations in multiple linear regression are outliers in the 

X-space, the Y-space or both. The univariate form of the Hadi’s influence 

measure of the i
th
 observation is given by  

 

2
2

2 1
1

i ii
i T ii

iii

hqe
H

h
h e e e

 
 

  
 

 (3.1) 

Where 
2

ie  is the vector of squared estimated residuals, q is the dimensions of β ,

T

e e  is the sum of the squared estimated residuals and iih  is the hat values of i
th
 

observation or diagonal elements of the hat matrix ))(( '1' XXXXH  . This 

diagnostic measure is the sum of two components each of which has an 

interpretation. A large value for the first term indicates that the model has a poor 

fit (a large prediction error) and a large value for the second term indicates the 

presence of an outlier in the X-space. Similarly, Hadi pointed these diagnostic 

measures possess several desirable properties and it also supplemented by a 

graphical display that shows the source of influence. He suggested,  2

iH  for 

observations more than a cut-off of    2 2

i iE H c V H  which is treated as a 

potential outlier, where c is an appropriate constant. Now rewrite (2.2) in terms 

of the estimated sum of the square residual  2
t

e e s n q    and the alternative 

form as 

  
    

2
2

2

2
2

/

11 1 /

i

ii
i

iiiii

q e s n q
h

H
hh e s n q



 
    

 

 (3.2) 

From (2.1), (2.2), (3.1) and the Prediction matrix H, they do the same role in 

multiple regression analysis except for the estimated residual part in (3.1).Hence 

the authors logically extended the Hadi’s influence to p-variate residual and the 
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multivariate Hadi’s influence measure of i
th 

observation is denoted as 
2

p iH . 

Using quadratic forms of the estimated residual of p-variate and rewrite (3.2) as 

multivariate Hadi’s influence measure which is given as 

  
    

1

2

1

/

11 1 /

T

i p i
ii

p i T

iiiii p i

q E S E n q
h

H
hh E S E n q







 
  

 (3.3) 

From (3.3), iE  is the 1p X   vector of squared estimated residuals, 

 /
T

pS E E n q   is the variance-covariance matrix of estimated residuals and 

the quadratic form  1 2 1
T

i p i i iiE S E R h    can be written in terms of the p-

variate squared internal studentized residual  2

iR  (see Hossain and Naik (2006) 

and the final form of Multivariate Hadi’s influence measure is given as 

  
    

2

2

2

/

11 1 /

i ii
p i

iiii i

q R n q h
H

hh R n q


 

  
 (3.4) 

Since the Multivariate Hadi’s influence measure from (3.4) can also be visualized 

in terms of the p-variate squared internal studentized residual  2

iR  and if p=1, 

then the Multivariate Hadi’s influence measure was reduced like (3.1) which is 

the univariate version of Hadi’s influence measure. The Proposed measure enjoys 

all the properties like (3.1) and the authors suggested,  2

p iH  for observations 

more than a cut-off of    2 2

p pE H c V H  which is treated as a potential 

outlier in multivariate regression analysis. 

4.  Multivariate Extension of Andrew-Pregibon Statistic 

Andrew-Pregibon  iAP  statistic is also an interesting technique based on the 

volume of confidence ellipsoids. It is a simple fact,  iAP  statistic is a measure 

of the influence of the i
th 

observation on the estimated regression coefficients can 

be based on the change in volume of confidence ellipsoids with or without the i
th 
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observation. The general form of the  iAP -statistic of the i
th
 observation is 

given by  

2
1 /

T
ii iiAP h e e e

 
   

 
 (4.1) 

Where 
2

ie  is the vector of squared estimated residuals,
T

e e  is the sum of the 

squared estimated residuals and iih  is the hat values of i
th
 observation or 

diagonal elements of the hat matrix
' -1 '(H=X(X X) X ) . Andrew-Pregibon 

suggested  iAP  for observations less than a cut-off of 1 2 /q n  or if it is very 

small and close to zero, which are treated as influential observations. They do not 

distinguish between a high leverage point in the factor space and an outlier in the 

response factor space. By using the fact  2
t

e e s n q  , Andrew-Pregibon 

statistic can also be written in an alternative form as 

 
 

2

2

1
1 1

1

i
i ii

ii

e
AP h

n q s h

  
    
   

  

 (4.2) 

From (2.1), (2.2), (4.1) and the hat values in the Prediction matrix H, they do the 

same role in multiple regression analysis except for the estimated residual part in 

(4.1).Hence the authors logically extended the Andrew-Pregibon statistic to  

p-variate residual and the multivariate Andrew-Pregibon statistic of i
th 

observation is denoted as p iAP . Now using quadratic forms of the estimated 

residual of p-variate and rewrite (4.2) as multivariate Andrew-Pregibon statistic 

which is written as 

 
1

1
1 1

1

T
i ip

p i ii
ii

E S E
AP h

n q h

  
  

       
  

 (4.3) 

From (4.3), iE  is the p X 1   vector of squared estimated residuals, 

 /
T

pS E E n q   is the variance-covariance matrix of estimated residuals and 

the quadratic form  1 2 1
T

i p i i iiE S E R h   can be written in terms of the p-variate 
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squared internal studentized residual  2

iR  (see Hossain and Naik (2006) and the 

final form of Multivariate Andrew Pregibon statistic is given as 

 
2

1 1 i
p i ii

R
AP h

n q

 
   
 
 

 (4.4) 

Since the Multivariate Andrew Pregibon statistic from (4.3) can also be shown in 

terms of the p-variate squared internal studentized residual  2

iR  and if p=1, then 

the Multivariate Andrew-Pregibon statistic was reduced like (4.2) which is the 

univariate version of the statistic. The Proposed measure is having similar 

properties to (4.1) and the authors suggested adopting the same calibration point 

 p iAP  to identify the influential observations in multivariate regression analysis. 

                               5.  Numerical Results and Discussion 

In this section, the authors have shown a numerical illustration of evaluating the 

potential outliers based on multivariate Hadi’s influence measure and identifying 

the influential observations by using Multivariate Andrew-Pregibon statistic of 

the i
th
 observation in a Multivariate regression model. The multivariate functional 

data in this study comprised of 19 different attributes about a car brand and the 

data was collected from 275 car users. A well-structured questionnaire was 

prepared and distributed to 300 customers and the questions were anchored at a 

five-point Likert scale from 1 to 5. After the data collection is over, only 275 

completed questionnaires were used for analysis. The authors fitted multivariate 

regression models with 4 response variables such as Top of the mind awareness 

(y1), Brand Recall (y2), Brand Recognition (y3), Brand-familiarity (y4) and 15 

predictors namely Satisfaction (x1), Commitment (x2), Liking (x3), Price-Premium 

(x4), Best-in category (x5), Popularity (x6), Brand leader (x7), Innovation (x8), 

Esteem (x9), Performance (x10), Value Association (x11), Organizational 

Association (x12), Brand differentiation (x13), Celebrity Association (x14), Animal 

Association (x15) were used in this study. 11 different Multivariate regression 

models were fitted by using Stata version 13 and for each model, the Multivariate 

Hadi’s influence measures  2

p iH  and Multivariate Andrew-Pregibon statistic 

 p iAP  were computed and the results are visualized along with the controls 

charts in the following Table-1, 2, and 3. (See Appendix). 
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6.  Discussion 

Table 1 and 2 visualizes the results of Multivariate Hadi’s influence measure 

 p iH  of evaluating the potential outliers. 11 nested multivariate regression 

models were evaluated and the cut-offs’ for different c values are shown in the 

table-1.we discard models-3,5,6 because the insignificance of the Breusch-Pagan 

test of independence confirms that the estimated residuals of the above said 

models are independent and uncorrelated. This show the highlighted models are 

not multivariate regression models and these are equivalent to fitting separate 

regression models with the respective dependent variable and the predictors. 

Hence, for these models, univariate Hadi’s influence measure and Andrew-

Pregibon statistic can be used to identify the potential outliers and influential 

observations, which is not the scope and objective of the paper. As far as the 

fitted models-1, 2, 4, are concern, the computed Bivariate Hadi’s influence 

measure for (30,14,6,4), (30,14,6,4), (39,24,6,0) observations are above the cut-

off value for various values of c=1,2,3,4 respectively. Hence these observations 

are said to be potential outliers. Similarly, models-7,8,9,10 are concern, 

(42,15,5,3),(37,17,8,3),(37,14,7,4),(46,15,3,2) observations are finalized as 

potential outliers based on the calculated trivariate Hadi’s influence measure and 

in the same manner, in model-11, the calculated Multivariate Hadi’s influence 

measure for (49,13,7,1) observations were above the cut-off and hence these 

observations are said to be the potential outliers. Table 3 shows the results of the 

Multivariate Andrew-Pregibon statistic  p iA  of evaluating the influential 

Observations. As far as models-1, 2, 4 are concern, (37, 32, 34) observations are 

treated as influential because the calculated Bivariate Andrew-Pregibon statistics 

for these observations are below the recommended Cut-off. Similarly, for the 

fitted models-7, 8,9,10, the calculated tri-variate Andrew-Pregibon statistic for 

the set of Observations (38,43,41,38) are less than the recommended cut-off 

which is treated as influential. Finally, in the fitted model-11,44 observations are 

considered to be influential based on the calculated Multivariate Andrew-

Pregibon statistic. Finally, in table-2, 3, the identity of potential outliers and 

influential observations are shown model-wise and the results are illustrated 

heuristically with the help of the following control charts. 



On Using the Multivariate Extension of…. 

31 

 

Control chart for fitted Model-1 shows the potential outliers based on Bivariate 

Hadi’s influence measure  2

2 iH . 

Fig. 1 

 
Fig. 2 

 
Fig. 3 

 
Fig. 4 
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Control chart for fitted Model-2 shows the potential outliers based on Bivariate 

Hadi’s influence measure  2

2 iH . 

Fig. 5 

 
Fig. 6 

 
Fig. 7 

 
Fig. 8 
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Control chart for fitted Model-4 shows the potential outliers based on Bivariate 

Hadi’s influence measure  2

2 iH
. 

Fig. 9 

 
Fig. 10 

 
Fig. 11 

 
Fig. 12 

 



G.S. David Sam Jayakumar, A. Sulthan and W. Samuel 

34 

 

Control chart for fitted Model-7 shows the potential outliers based on Tri-variate 

Hadi’s influence measure  2

2 iH  

Fig. 13 

 
Fig. 14 

 
Fig. 15 

 
Fig. 16 
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Control chart for fitted Model-8 shows the potential outliers based on Tri-variate 

Hadi’s influence measure  2

3 iH  

Fig. 17 

 
Fig. 18 

 
Fig. 19 

 
Fig. 20 
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Control chart for fitted Model-9 shows the potential outliers based on Tri-variate 

Hadi’s influence measure  2

3 iH  

Fig. 21 

 
Fig. 22 

 
Fig. 23 

 
Fig. 24 
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Control chart for fitted Model-10 shows the potential outliers based on Tri-variate 

Hadi’s influence measure  2

3 iH  

Fig. 25 

 
Fig. 26 

 
Fig. 27 

 
Fig. 28 
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Control chart for fitted Model-11 shows the potential outliers based on Multivariate 

Hadi’s influence measure  2

4 iH  

Fig. 29 

 
Fig. 30 

 
Fig. 31 

 
Fig. 32 
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Control chart for fitted Model shows the influential Observations based on 

Bivariate AP-statistic  2 iAP  

Fig. 33 

 
Fig. 34 

 
Fig. 35 
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Control chart for fitted Model shows the influential Observations based on 

Tri-variate AP-statistic  3 iAP  

Fig. 36 

 
Fig. 37 

 
Fig. 38 

 
Fig. 39 
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Control chart for fitted Model shows the influential Observations based on 

Multivariate AP-statistic  4 iAP  

Fig. 40 

 
 

7. Conclusion 

From the previous sections, the authors proposed a multivariate extension of the 

univariate regression diagnostics namely Hadi’s influence measure and Andrew-

Pregibon statistic. The multivariate extension of these two frequently used 

diagnostic measure open the way to identify the potential outliers and influential 

observations in a linear multivariate regression model. To scrutinize the residuals 

in a fitted linear multivariate regression model, the authors recommended using 

these techniques along with the Breusch-Pagan test of independence will be more 

meaningful in identifying extreme observations. Finally, the authors suggested 

the exploration of the exact distribution of both measures will lead to a more 

scientific investigation of exact potential outliers and influential observations, 

which is left for future research. 
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