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ABSTRACT

This paper addressed the two frequently used error diagnostics in multiple
linear regression analysis namely Hadi’s influence measure and Andrew-
Pregibon statistic which were logically extended and generalized to the
multivariate form denoted as Multivariate Hadi’s influence measure (,H7)
and Multivariate Andrew-Pregibon statistic (;AR). The Proposed
multivariate measures were used to identify the Potential Outliers and
Influential Observations in multivariate linear regression analysis. For this,

11 multivariate regression models were fitted and the multivariate(pHiz),

(pAPi) measures are utilized to scrutinize the residuals; results were
exhibited along with the control charts.

1. Introduction and Related Work

Until the third quarter of the 20th century, to detect potentially critical
observations Studentized residuals and the plot of the residuals were considered
the most appropriate statistical methods. Behnken and Draper (1972) have
explained that the estimated variance of the residuals includes pertinent
information beyond that provided by plots of residuals or studentized residuals.
They have also discussed the variances of residuals in several more complicated
designs. Hoaglin and Welsh (1978) expressed, projection matrix known as the
hat matrix contains this information and, together with the studentized residuals,
provides a means of identifying exceptional data points. Cook (1977) has been
the first to establish a simple measure, Di that incorporates information from the
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X-space and Y-space used for assessing the influential observations in regression
models. The problem of outliers or influential data in the multiple or multivariate
linear regression setting has been thoroughly discussed regarding parametric
regression models by the pioneers namely Cook (1977), Cook and Weisberg
(1982), Belsey et al. (1980) and Chatterjee and Hadi (1988) respectively. In non-
parametric regression models, diagnostic results are quite rare. Among them,
Eubank (1985), Silverman (1985), Thomas (1991), and Kim (1996) studied
residuals, leverages, and several types of Cook’s distance in smoothing splines,
and Kim and Kim (1998), Kim et al. (2001) proposed a type of Cook’s distance
in kernel density estimation and local polynomial regression. Belsey et al. (1980)
gave a suitable definition of influence after investigating the influential
observations from early Cook’s measure to other various measures then. Cook’s
statistical diagnostic measure is a simple, unifying and general approach for
judging the local influence in statistical models. As far as the influence measures
are concern in the literature, the procedures were designed to detect the influence
of observations on a specific regression result. However, Hadi (1992), proposed a
diagnostic measure called Hadi’s influence function to identify the overall
potential influence which possesses several desirable properties that many of the
frequently used diagnostics do not generally possess such as invariance to
location and scale in the response variable, invariance to non-singular
transformations of the explanatory variables, it is an additive function of
measures of leverage and residual error, and it is monotonically increasing in the
leverage values and the squared residuals. Diaz-Garcia and Gonalez-Farias
(2004) modified the classical Cook’s distance with generalized Mahalanobis
distance in the context of multivariate elliptical linear regression models and they
also establish the exact distribution for identification of outlier data points. Using
Mahalanobis distance, Jayakumar and Thomas (2013) proposed a procedure of
clustering based on multivariate outlier detection. Using the relationship
proposed by Weisberg (1980), Belsey et al. (1980); Jayakumar and Sulthan
(2015; 2016; 2017) proposed an exact distribution of Cook’s distance used to
evaluate the influential observations in multiple linear regression analysis.
Further, they introduced a new method of regression clustering based on
influential observations where the observations are treated as potential outliers.
Lately, they established an exact distribution of Andre-Pregibon Statistic and
evaluate influential observations in a multiple linear regression analysis,
respectively. In this paper, the authors address two frequently used error
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diagnostics in multiple linear regression analysis namely Hadi’s influence
measure and Andrew-Pregibon statistic which were logically extended and
generalized to the multivariate form and discussed in subsequent sections.

2. Some Preliminaries
The Multivariate linear regression model with random error is given by

Y =XB+E 2.1)

where (nXM ok are the matrix of dependent and independent variables,wgw is the
matrix of beta coefficients or partial regression coefficients and (ngm is the
residual matrix followed multivariate normal distribution N(O, (DZXE,]))
respectively, where rank (X)=0 and P<4. The best linear unbiased estimate
of wéw of the j" regression is given as

B =(X"x)7Y, 22)

where j=12,3...,p
From (2.2), the estimate of £ which is the same as an equation by equation least

squares estimation. Note that hi is the hat values of i observation or diagonal

elements of the hat matrix (H = X (X X)™X") or prediction matrix play the
same role as in multiple regression. Large values indicate that at least one
component of the i" observation may be an influential point in X-space. From
(2.1), statisticians concentrate and give importance to the error diagnostics such
as outlier detection, identification of leverage points and evaluation of influential
observations. Several error diagnostics had been proposed in the past especially
to scrutinize the residuals for multiple linear regression analysis and Hossain and
Naik (1989) addressed the logical extension of the univariate diagnostics to the
multivariate case. For a multivariate linear regression model, they generalized the
internal studentized residual, external studentized residual in terms of Hoteling’s
T-square statistic, Cook’s distance, Modified Cook’s distance, Welsch-Kuh
distance, Co-variance ratio and Likelihood displacement or Likelihood distance.
Similarly, Diaz-Garcia et al. (2007) studied the exact distributions of multivariate
classical, modified cook’s distance to the multivariate elliptical linear regression
25
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model. Several error diagnostics techniques were extended to the multivariate
form and Hadi's influence measure, Andrew Pregibon statistic so far not yet
addressed and generalized to the multivariate linear regression. The Multivariate
extension of Hadi’s influence measure and Andrew Pregibon statistic is discussed
in the following and subsequent sections.

3. Multivariate Extension of Hadi’s Influence Measure

Hadi,S(Hiz) influence measure is an interesting technique based on the fact that
potentially influential observations in multiple linear regression are outliers in the
X-space, the Y-space or both. The univariate form of the Hadi’s influence
measure of the i" observation is given by

2
gei LT
N IPNA _h: 3.1
(1—hii)(eTe—ei2j 1-hi (3.1)

Where €’ is the vector of squared estimated residuals, q is the dimensions of B,

AT ~

e e is the sum of the squared estimated residuals and hi is the hat values of i"

Hi2=

observation or diagonal elements of the hat matrix (H = X (X X)™X") | This
diagnostic measure is the sum of two components each of which has an
interpretation. A large value for the first term indicates that the model has a poor
fit (a large prediction error) and a large value for the second term indicates the
presence of an outlier in the X-space. Similarly, Hadi pointed these diagnostic
measures possess several desirable properties and it also supplemented by a

2
i

graphical display that shows the source of influence. He suggested,(H ) for

observations more than a cut-off of E(Hi2)+0\f0 (H?) which is treated as a
potential outlier, where ¢ is an appropriate constant. Now rewrite (2.2) in terms

At ~
of the estimated sum of the square residual e e=s?(n—q) and the alternative
form as

H-2

q(éf/sz(n_q)) N
i g (3.2)
(1—h“)(1—(6i2/32(n_q))) 1-h,

From (2.1), (2.2), (3.1) and the Prediction matrix H, they do the same role in
multiple regression analysis except for the estimated residual part in (3.1).Hence

the authors logically extended the Hadi’s influence to p-variate residual and the
26
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multivariate Hadi’s influence measure of i"" observation is denoted as pHi :

Using quadratic forms of the estimated residual of p-variate and rewrite (3.2) as
multivariate Hadi’s influence measure which is given as
h

q(EiTSF;lEi/(n—Q)) L (3.3)

M= (1-h, )(1- EISE /(n—q)) 1-h,

From (3.3), E is the P X1 vector of squared estimated residuals,
T
S, =E E/(n-q) is the variance-covariance matrix of estimated residuals and
T
the quadratic form EiS;*E; =R”(1—h;) can be written in terms of the p-

variate squared internal studentized residual (Riz) (see Hossain and Naik (2006)

and the final form of Multivariate Hadi’s influence measure is given as
Lo O(RY/(n-a))  n,

P 1 (@-h)R?/(n-q)) 1-h,

(3.4)

Since the Multivariate Hadi’s influence measure from (3.4) can also be visualized

in terms of the p-variate squared internal studentized residual (Riz) and if p=1,

then the Multivariate Hadi’s influence measure was reduced like (3.1) which is

the univariate version of Hadi’s influence measure. The Proposed measure enjoys
2
i

all the properties like (3.1) and the authors suggested,(pH ) for observations

more than a cut-off of E(,H*)+cyV(,H?) which is treated as a potential
outlier in multivariate regression analysis.

4. Multivariate Extension of Andrew-Pregibon Statistic
Andrew-Pregibon(APi) statistic is also an interesting technique based on the

volume of confidence ellipsoids. It is a simple fact,(AR) statistic is a measure

of the influence of the i"" observation on the estimated regression coefficients can
be based on the change in volume of confidence ellipsoids with or without the i
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observation. The general form of the (APi)-statistic of the i™ observation is
given by

~2 T~
AR :1—hii—(ei /e e) 4.2)

. . . AT~
Where ei2 is the vector of squared estimated residuals,e e is the sum of the

squared estimated residuals and h, is the hat values of i" observation or

diagonal elements of the hat matrix (H=X(XX)"X) . Andrew-Pregibon

suggested (AP,) for observations less than a cut-off of 1204 /n or if it is very

small and close to zero, which are treated as influential observations. They do not
distinguish between a high leverage point in the factor space and an outlier in the

response factor space. By using the fact ee=s (n—-q), Andrew-Pregibon
statistic can also be written in an alternative form as

~2
1 ej

n-q 82(1—hii)

From (2.1), (2.2), (4.1) and the hat values in the Prediction matrix H, they do the
same role in multiple regression analysis except for the estimated residual part in
(4.1).Hence the authors logically extended the Andrew-Pregibon statistic to

p-variate residual and the multivariate Andrew-Pregibon statistic of i

AR =(1-h;j)| 1- (4.2)

observation is denoted as AR . Now using quadratic forms of the estimated
residual of p-variate and rewrite (4.2) as multivariate Andrew-Pregibon statistic
which is written as

1 | Ei Sp Ej
n—q 1-hy;

pAR =(1-hjj)| 1~ (4.3)
From (4.3), E is the pX1 vector of squared estimated residuals,
T
S,=E E/(n-q) is the variance-covariance matrix of estimated residuals and
T
the quadratic form Ei S'E; = R? (1—h; ) can be written in terms of the p-variate
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squared internal studentized residual (Riz) (see Hossain and Naik (2006) and the
final form of Multivariate Andrew Pregibon statistic is given as

pAR =(1-hjj)| 1-—— (4.4)

Since the Multivariate Andrew Pregibon statistic from (4.3) can also be shown in

terms of the p-variate squared internal studentized residual (Riz) and if p=1, then

the Multivariate Andrew-Pregibon statistic was reduced like (4.2) which is the
univariate version of the statistic. The Proposed measure is having similar
properties to (4.1) and the authors suggested adopting the same calibration point

(PAPi) to identify the influential observations in multivariate regression analysis.
5. Numerical Results and Discussion

In this section, the authors have shown a numerical illustration of evaluating the
potential outliers based on multivariate Hadi’s influence measure and identifying
the influential observations by using Multivariate Andrew-Pregibon statistic of
the i observation in a Multivariate regression model. The multivariate functional
data in this study comprised of 19 different attributes about a car brand and the
data was collected from 275 car users. A well-structured questionnaire was
prepared and distributed to 300 customers and the questions were anchored at a
five-point Likert scale from 1 to 5. After the data collection is over, only 275
completed questionnaires were used for analysis. The authors fitted multivariate
regression models with 4 response variables such as Top of the mind awareness
(y1), Brand Recall (y,), Brand Recognition (ys;), Brand-familiarity (y,) and 15
predictors namely Satisfaction (x;), Commitment (x,), Liking (xs), Price-Premium
(x4), Best-in category (xs), Popularity (xs), Brand leader (x;), Innovation (Xg),
Esteem (xo), Performance (xy0), Value Association (x;;), Organizational
Association (x12), Brand differentiation (x;3), Celebrity Association (Xi4), Animal
Association (x;5) were used in this study. 11 different Multivariate regression
models were fitted by using Stata version 13 and for each model, the Multivariate

Hadi’s influence measures (pHiz) and Multivariate Andrew-Pregibon statistic

(,AR) were computed and the results are visualized along with the controls
charts in the following Table-1, 2, and 3. (See Appendix).

29



G.S. David Sam Jayakumar, A. Sulthan and W. Samuel

6. Discussion
Table 1 and 2 visualizes the results of Multivariate Hadi’s influence measure

(,H) of evaluating the potential outliers. 11 nested multivariate regression
models were evaluated and the cut-offs’ for different ¢ values are shown in the
table-1.we discard models-3,5,6 because the insignificance of the Breusch-Pagan
test of independence confirms that the estimated residuals of the above said
models are independent and uncorrelated. This show the highlighted models are
not multivariate regression models and these are equivalent to fitting separate
regression models with the respective dependent variable and the predictors.
Hence, for these models, univariate Hadi’s influence measure and Andrew-
Pregibon statistic can be used to identify the potential outliers and influential
observations, which is not the scope and objective of the paper. As far as the
fitted models-1, 2, 4, are concern, the computed Bivariate Hadi’s influence
measure for (30,14,6,4), (30,14,6,4), (39,24,6,0) observations are above the cut-
off value for various values of ¢=1,2,3,4 respectively. Hence these observations
are said to be potential outliers. Similarly, models-7,8,9,10 are concern,
(42,15,5,3),(37,17,8,3),(37,14,7,4),(46,15,3,2) observations are finalized as
potential outliers based on the calculated trivariate Hadi’s influence measure and
in the same manner, in model-11, the calculated Multivariate Hadi’s influence
measure for (49,13,7,1) observations were above the cut-off and hence these
observations are said to be the potential outliers. Table 3 shows the results of the
Multivariate Andrew-Pregibon statistic(,A) of evaluating the influential

Observations. As far as models-1, 2, 4 are concern, (37, 32, 34) observations are
treated as influential because the calculated Bivariate Andrew-Pregibon statistics
for these observations are below the recommended Cut-off. Similarly, for the
fitted models-7, 8,9,10, the calculated tri-variate Andrew-Pregibon statistic for
the set of Observations (38,43,41,38) are less than the recommended cut-off
which is treated as influential. Finally, in the fitted model-11,44 observations are
considered to be influential based on the calculated Multivariate Andrew-
Pregibon statistic. Finally, in table-2, 3, the identity of potential outliers and
influential observations are shown model-wise and the results are illustrated
heuristically with the help of the following control charts.
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Control chart for fitted Model-1 shows the potential outliers based on Bivariate

Hadi’s influence measure ( H? ) .
Fig. 1
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Control chart for fitted Model-2 shows the potential outliers based on Bivariate
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Control chart for fitted Model-4 shows the potential outliers based on Bivariate

Hadi’s influence measure ( 2 Hiz) .
Fig. 9
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Control chart for fitted Model-7 shows the potential outliers based on Tri-variate

Hadi’s influence measure ( 2 Hiz)
Fig. 13
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Control chart for fitted Model-8 shows the potential outliers based on Tri-variate

Hadi’s influence measure (3 Hiz)
Fig. 17
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Control chart for fitted Model-9 shows the potential outliers based on Tri-variate

Hadi’s influence measure (3 Hiz)
Fig. 21
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Control chart for fitted Model-10 shows the potential outliers based on Tri-variate

Hadi’s influence measure (3 Hiz)
Fig. 25
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Control chart for fitted Model-11 shows the potential outliers based on Multivariate

Hadi’s influence measure («H:)
Fig. 29
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Control chart for fitted Model shows the influential Observations based on

Bivariate AP-statistic ( AP )
Fig. 33
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Control chart for fitted Model shows the influential Observations based on

Tri-variate AP-statistic ( sAR )
Fig. 36
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Control chart for fitted Model shows the influential Observations based on
Multivariate AP-statistic ( +AR )

Fig. 40
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7. Conclusion

From the previous sections, the authors proposed a multivariate extension of the
univariate regression diagnostics namely Hadi’s influence measure and Andrew-
Pregibon statistic. The multivariate extension of these two frequently used
diagnostic measure open the way to identify the potential outliers and influential
observations in a linear multivariate regression model. To scrutinize the residuals
in a fitted linear multivariate regression model, the authors recommended using
these techniques along with the Breusch-Pagan test of independence will be more
meaningful in identifying extreme observations. Finally, the authors suggested
the exploration of the exact distribution of both measures will lead to a more
scientific investigation of exact potential outliers and influential observations,
which is left for future research.
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