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ABSTRACT 

In parameter estimation techniques the maximum likelihood estimation 

method is the most common technique used in social sciences and 

psychology although it is usually biased in a situation where sample sizes 

are small or when the data are heavily censored. Thus, the main objective 

of this paper is to present an optimal technique using the Runge-Kutta 

method to find the point estimation for the distribution parameters to 

avoid the drawback of the maximum likelihood estimation method. This 

method has been applied to derive the estimators of the inverse Weibull 

model parameters and compare them with the standard maximum 

likelihood estimation and Bayesian estimation methods based on the 

generalized progressive hybrid-censoring scheme, via the Monte Carlo 

simulations. The simulation results indicated that the estimates are highly 

favorable for the Runge-Kutta method, which provides better estimates 

and outperforms Bayesian and maximum likelihood estimation methods 

for different sample sizes and several values of the true parameters. 

Finally, two real data analyses are presented to demonstrate the 

efficiency of the proposed methods.  

1. Introduction 

In statistical inference, the maximum likelihood estimation (MLE) method is 

known to be the most commonly has been used in point estimation despite its 

bias when the sample sizes are small or when the data are heavily censored and it 

is not efficient as the Bayesian estimate. Its bias can mislead subsequent 

inferences and in some distributions contains nonlinear equations that need 

numerical iteration techniques. Thus, in this paper, we present an optimal method 

to find point estimates for the distribution parameters that are more efficient than 

the standard MLE and the Bayesian estimates. 

To illustrate that, we employed the proposed methods on one of the employed 

lifetime distributions and reliability theory, the inverse Weibull distribution 
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(IWD) that has a probability density function and a cumulative distribution 

function, which presented respectively as follows: 
1

f (x; , ) x exp( x )
 

     , x 0
 

(1.1) 
 

 F(x; , ) exp( x )


   
,
x 0

 
(1.2) 

where , 0   are the shape and scale parameters respectively. 

It includes two well-known distributions such as the inverse exponential 

distribution for 1   and the inverse Rayleigh distribution for 2  .  

This model proposed as a model in the analysis of life test data. It played an 

important role in many applications such as the dynamic components of diesel 

engines and several datasets such as the breakdown times of the insulating fluids 

subject to the action of constant tension. Furthermore, it has been used in the 

reliability engineering discipline and a variety of failure characteristics such as 

infant mortality, wear-out periods, and to determine the cost-effectiveness and 

maintenance periods of reliability-centered maintenance activities. Keller and 

Kamath (1982) and Keller et al. (1985) derived this model based on the physical 

considerations on some failures of mechanical components subject to degradation 

phenomena. Erto (1986) introduced other physical failure processes leading to 

this distribution. Moreover, it gives a good fit to life testing data reported in 

Nelson (1982), and weather phenomena (flood, drought, and rainfall, etc.) see, 

Maswadah (2003) who proved its usefulness in modeling extreme value data. 

The estimation procedures in classical and Bayesian approaches to this 

distribution studied extensively in the literature. Calabria and Pulcini (1989) 

investigated the statistical properties of Maximum Likelihood Estimators 

(MLE’s) of the parameters and reliability based on a complete sample. Erto 

(1989) used the Least-Square (LS) method to obtain the estimators of the 

parameters and reliability. Calabria and Pulcini (1990) derived the MLE’s and 

the LS of the parameters. Calabria and Pulcini (1992) derived the Bayes 

estimator of the parameters and reliability. Calabria and Pulcini (1994) derived 

the prediction for some future variables. Khan et al. (2008 a, b) provided some 

theoretical analysis and derived the MLEs for the IWD parameters. Sultan (2008) 

derived the Bayesian estimates for some record values from the IWD. Miljenko 

et al. (2010) derived the least square estimates for the three-parameter IWD. In 

recent decades, some authors have been used the technical information about the 

real systems and converted it into a degree of belief about the model parameters 

that improved the accuracy of the estimators, see Calabria and Pulcini (1994). 

For a comprehensive study on the IWD, see Johnson et al. (1994) and Murthy  

et al. (2004).    
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In the reliability analysis, experiments are often terminate before all units on the 

test fail due to costs and time considerations or may be lost or removed from the 

test before failure. Thus, censored sampling schemes arise in such life testing 

experiments. The general scheme for studying such experiments is the 

Progressive censoring scheme, which is one of the familiar schemes useful for 

both industrial life testing applications and clinical trials. It allows the removal of 

some of the surviving experimental units at different stages before the 

termination of the test. Balakrishnan and Aggarwala (2000) and Balakrishnan 

and Cramer (2014) presented comprehensive studies on the subject of 

progressive censoring and its applications. The progressive Type-II censoring 

scheme is the most commonly applied in life test experiments, although the 

experimental time may be very long due to the presence of some highly reliable 

units. Thus, Kundu and Joarder (2006) recently proposed a censoring scheme 

called Type-II progressive hybrid censoring scheme, which is a mixture of Type-

II progressive and hybrid censoring schemes which can be described as follows:  

Consider n  identical items placed on a test with considering 
1 2 m

R ,R ,...,R  are 

the random removal units that are fixed at the beginning of the experiment with 

m( n)  and the time point T are fixed beforehand. Generally, at the time of the 

i _ th failure, iR units are randomly removed from the remaining surviving units

i 1

i j

j 1

S n i R




   , where i 1(1)m. If the failure time of the m_ th  failure occurs 

before the time point T the experiment stops at the time point
m:m:n

X  and all the 

remaining surviving units 

m 1

m j

j 1

S n m R




   are removed with m m
R S . On the 

other hand, if the thm _  
failure does not occur before the time point T and only k

failures occur before the time point T,  where m:m:n
X T , then at the time point T

all the remaining surviving units k
R are removed and the experiment terminates 

at the time
*

m: m . n
T min{X , T} . 

However, the drawback of the progressive hybrid-censoring scheme is that very 

few failures may occur, before the time point T  In order to provide assurance of 

the number of the observed failures as well as the time to complete the test, Cho 

et al. (2014, 2015) proposed the generalized progressive hybrid- censoring 

scheme (GPHCS).This scheme modifies the progressive hybrid censoring 

scheme by allowing the experiment to continue beyond time T if the number of 
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failures are less than m , which allows the experimenter to observe at least k  

failures. This scheme can be described as follows:  

Consider a life-testing experiment in which n identical units 
1 2 nX ,X ,.....,X

placed on the test. For T (0, ),  integers k and m are pre-fixed such that k m  

with 1 2 mR ,R ,...,R are the random removal units that are fixed at the beginning of 

the experiment where
m

i

i 1

n m R


  . Generally, at the time of the i _ th failure, iR

units are randomly removed from the remaining surviving units 
i 1

i j

j 1

S n i R




   , 

where i=1(1)m.This process continues until, immediately following the 

terminated time *

k:m m:nT max{X ,min{X ,T}} , where at this time all the remaining 

surviving units are removed from the experiment according to the following 

cases. Let J denote the number of observed failures up to the time T . Thus, we 

have one of the following types of observations:  

Case I:   
 

If K:m:D m:m:DX T X 
.
 

Case II: 1:m:D k:m:D k 1:m:D m:m:DX ... X X ... X    
 

 If   k:m:D m:m:DX X T  . 

Case III:  1:m:D J:m:D J 1:m:D k:m:DX ... X X ... X    
 

 
If   k:m:D m:m:DT X X . 

 

Note that for Case I, J:m:D J 1:m:DX T X   and J 1:m:D m:m:DX ,.....,X are not observed. 

For Case III, k:m:D m:m:DT X X  and k 1:m:D m:m:DX ,.....,X are not observed.  

Thus, given a generalized progressive hybrid censored sample, the likelihood 

function for the three different cases can be written in a unified form as follows: 

   
*

i T

D
R R

i:m:D i:m:D
i 1

L(x; ) C f (x ) 1 F(x ) 1 F(T)




     , (1.3) 

where, 
mD

j
i 1

j 1

C (R 1)




 
 

 

DmJDmkDmkDm XXXX ::::1::::1 ......  
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k:m:D m:m:D

k:m:D m:m:D

k:m:D m:m:D

J , 1 if X T X
D m, 0 if X X T

k , 0 if T X X

   
    

   





,and 

















 DmmDmkkJJ

DmmDmkm

DmmDmkJ

XXTifXXXXX

TXXifXXX

XTXifXXX

X

:::::121

::::21

:::::21

)...,,,...,,(

),...,,(

),...,,(

,

 

with *

TR is the number of surviving units that are removed at the stopping time T. 

The GPHCS has been applied for some distributions such as the Weibull 

distribution see Cho et al. (2015 b), the inverse Weibull distribution see Mohie 

El-Din and Nagy (2017), the Exponential distribution see Cho et al. (2015 a), the 

Rayleigh distribution see Cho et al. (2014), and the shape-scale family see 

Maswadah (2021).   

2. Runge-Kutta  Method 

The likelihood function for n  independent observations is the product of the 

probability density functions for any statistical model, which contains all the 

information about the unknown parameters in the sample. The log-likelihood 

function H( ;X) depends on the unknown parameter ( , )     and the data

1 2 nX (X ,X ,...,X ) .Thus, the MLE ˆ ˆ(x)    of   is the solution of the stationary 

equations ˆ

H( ;X)
0



 



, which is a function of ˆ (x) and X. Applying the 

implicit function theorem to the stationary equation with considering all partial 

derivatives, as well as the total derivatives are assumed to be evaluated at some 

known value of  0
ˆ(x)   , says. Taking the total derivative with respect to any 

x X for the stationary equations, see Ramsay et al. (2007), we obtain 
2 2

ˆ ˆ ˆ
2

ˆd H( ;X) H( ;X) H( ;X) d
( ) 0.

dx x dx
  

      
  

  
 (2.1) 

Solving (2.1) we obtain the first derivative with respect to x for ̂ at ˆ   as: 

.
);();(ˆ

ˆ

2
1

ˆ2

2

 










 






















x

XHXH

dx

d
 (2.2) 

J
* *

1 2 J T T i k:m:D m:m:D

i 1
m 1

i 1 2 m m i k:m:D m:m:D

i 1
k 1

1 2 J k k i k:m:D m:m:D

i 1

(R , R ,..., R , R ) , R D J R if X T X

R (R , R ,..., R ) , R D m R if X X T

(R , R ,..., R , 0, 0,...0, R ) , R D k R if T X X









    

     

    














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Thus, we can write (2.2) as the first-order ordinary differential equation in the 

maximum likelihood estimator ˆ (x)  of   as 

),ˆ,(
ˆ




xf
dx

d
 with the initial condition 

0
ˆ (x)    , (2.3) 

 It is clear that ˆf (x, )  and 
ˆdf (x, )

d




are defined and continuous functions in a 

rectangular region containing the point
0 0(x , ), which ensures the existence of a 

unique solution for (2.3) in the neighborhood of the point
0 0(x , ) . Using any 

numerical technique such as the fourth-order Runge-Kutta, we can find the 

approximate solution given a trial set of parameter values and initial conditions. 

If the initial conditions are unavailable, they must be appended to the parameter

θ̂ as quantities with respect to which the fit is optimized. Thus, the recurrence 

solution for (2.3) can be written as: 

 

 ̂i+1=  ̂i  + (K1 + 2K2 + 2K3 + K4) /6, for i = 0,1,2,…, (2.4) 

where 

K1 = hf (xi,  ̂i), K2 = hf (xi + h/2,  ̂i + K1/2), 

K3= hf (xi + h/2,  ̂i + K2/2) and K4 = hf (xi + h,  ̂i + K3). 

Here h is the step height with a small value say (1E-01), and 
0

ˆ   , is the initial 

value for ̂ . 

For the inverse Weibull model, the likelihood function of the GPHCS (1.3) and 

its derivatives based on the generalized progressive hybrid censored samples can 

be derived as 

D -α -α -α *
D -α-1 -βx -βx R -βT R δi i i T

i

i=1

L(θ;x)=C(αβ) x e [1-e ] [1-e ]
 

  (  )    ( (   )∑       

 

   

∑     
  

 

   

 

     ∑      (       
   

   
)   

     (        
)  (2.5) 

Thus, the log- likelihood function can be derived as 

      (     )       (  )  (   )∑   
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DD
x * Ti

i i T

i 1 i 1

x R ln(1 e ) R ln(1 e )
 

 

 

      . 

D D

i i i
i 1 i 1

H
D / ln x x ln x



 


     


  

i

i

x TD

*i i

i T
x T

i 1

x ln x e T ln Te
[ R R ]

1 e1 e

   

   

  

 


  


 , 

i

i

x TDD
*i

i i T
x T

i 1 i 1

H x e T e
D / x R R

1 e 1 e

 

 

   



 
 


     

  
 , 

i i i

i

x x x2 22 D
2 i i

i2 x 2
i 1

(1 e )(x e ) (x e )H
D / R

(1 e )

  



    




 
   

 
  

 
T T T2 2

*

T T 2

(1 e )(T e ) (T e )
R

(1 e )

     

 

    



 



, 

i

i

x T2 DD
2 2 2 2 * 2i i

i i i T2 x T
i 1 i 1

x ln x e T ln TeH
D / x (ln x ) R ( ) R ( ) ]

1 e 1 e

 

 

  



 
 


      

  
  

i i

i

x T2 2D
*i i i

i Tx T
i 1

( x 1)x (ln x ) e ( T 1)T (ln T) e
[ R R [ ]

1 e 1 e

 

 

    

 


   
  

 
 , 

i i

i

x 2 x1 2 2 12 DD
1 i i i

i i x 2
i 1 i 1

( x x )e x eH
x R

x (1 e )

 



      




 

    
  

 
 ,  

 
2

D D
1 1

i i i
i 1 i 1i

H 1
[ x ln x x ]

x x

 

 


     


 

 

i i i

i

x x x1 1 2 1D

i i i i i

i x 2
i 1

(1 e )[x x ln x ]e x ln x e
[ R ]

(1 e )

  



     




    



 , 

Thus, using (2.4) with the above corresponding derivatives we can find the point 

estimates for each and   separately using the Runge-Kutta method. 
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3. Bayesian Estimation Based on the Informative Prior 

We propose the use of piecewise independent priors for both parameters, namely 

each of the unknown parameters  and  has gamma distribution as given by: 
 

a

a 1 b

1

b
g ( ) e

(a)

  
  



, a, b 0 and

c

c 1 d

2

d
g ( ) e

(c)

  
  



, c,d 0 . 

Where the hyper-parameter a, b, c, and d are assumed to be known, and chosen to 

reflect the prior belief about the unknown parameters. Thus, the joint prior 

density is given by 

  (   )               . (3.1) 

 Using the informative prior (3.1) and the likelihood function of the GPHCS 

(2.5), the posterior density for the parameters can be derived as 

*

i i i T

D

x x R RD 1 T

i

i 1

f ( , | x) Cg( , )( ) x e [1 e ] [1 e ]
     

    



       
 

D D
D

i i

i 1 i 1

Cg( , )( ) exp[ ( 1) lnx x ]


 

           

*

i T

i

*R RD

i jxj k kTT

j 0 k 0i 1

R R
( 1) e ( 1) e

j k

   



 

 


  

  
  

   
 

 
D

D

i

i 1

Cg( , )( ) exp( ( 1) ln x )


       

 

*

i T
*R RD

n
ij k T

i i
i 1

j 0 k 0i 1

RR
( 1) exp[ (d (1 J )x LT )]

jk



  


 


     

  
  

  
 . 

Thus, the posterior density for the parameters can be written as 
D

D a 1 D c 1

i

i 1

f ( , | x) K exp( (b ln x ))
   



        

*

1 2 D T

1 2 n

R R R R
n

i i i
i 1

J 0 J 0 J L 0

..... A(L, J ) exp[ (d (1 J )x LT )]



 


  

      

D
D a 1 D c 1

i

i 1

K exp[ b ( 1) ln x ]
   



         

*
n

i i i
i 1

L ,J

A(L, J ) exp[ (d (1 J )x LT )]
 



    , 

Where  

R R R R*

L , J J 0 J 0 J L 0

*

1 2 D T

1 2 n

.....



  

   and   i

*
K J i T

i
i

R RA(L, J ) ( 1)
J L

    
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The marginal density for α can be generated as 
D

D a 1

i

i 1

f ( | x) K (D c) exp[ b ( 1) ln x ] 



           

*
D

( n c )

i i i
i 1

K ,J

A(L, J )[d (1 J )x LT ]
   



   . 

K is the normalizing constant and can be evaluated as 
D

1 D a 1

i

i 10

K (D c) exp[ b ( 1) ln x )]


  



          

* D
(D c)

i i i
i 1L,J

A(L,J )[d (1 J )x LT ] d .   



    

 4. Simulation Study 

For studying the performance of the R-K, the standard MLE and Bayes methods, 

through the parameter estimates and the root mean square error (RMSE), which is 

given as: 
M

* * 2

i 1

RMSE( ) ( ) / M


     , where 
*
 is the point estimate for the 

unknown parameter  and M is the number of replications. 

In our simulation study, we choose different combinations for the 

hyperparameters of  and say: a (2,4,7) , b (8,7,6) , c(4,7) and 

d (7,6) . Thus, we can generate from the gamma distribution three values for 

the parameter (0.5929, 1.1077, 1.9737)  and two values for the 

parameter= (1.1077,1.9737)  respectively. Using the above values of the 

parameters for generating different samples from the inverse Weibull  

distribution with sizes n = 20, 40 ,60, and 100 to represent small, moderate, and 

large sizes. To assess the performance of these estimates, the RMSEs for each 

one were calculated using 1000 replications.  

The generation of the generalized progressive hybrid censored order statistics can 

be carried out according to the following procedure: 

Let  1 2 n
X X ,X ,...,X  be a random sample with size n  from the parent 

distribution. Thus, based on the random sample the generalized progressive 

hybrid censored sample with size m( n) :  1:m:n 2:m:n m:m:n
X ,X ,...,X , can be 

generated as follows:  

i) Let   mRRR ,...,, 21
 

be the predetermined number of a uniform 

random removal observations, which can be generated as 
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)1)(1(1,))/(*)1(*2int(
1

1

 




mimnURmnAnR
i

j

ji
, 

where  

U Uniform(0,1) and 





1

1

m

i

im RmnR . 

ii) For 1i ; choose the minimum observation of the random sample say nmiX :,  

which is the thi _  observation that can be selected for the generalized 

progressive hybrid censored random sample.  

iii) Remove randomly the uniform random observations of iR that is 

 iciii rrrR ,,2,1 ,...,  ,   

mi )1(1  
and c is the number of censored observations, where 

)*)1int((
1

1

, URnAnr
i

l

lij  




,  

cj )1(1 be the subscripts of the removal random observations without 

replacement from the  

subset *

i i iX X \{A B } , where 
i

i j:m:n

j 1

A X


  and 
i 1

i j

j 1

B R




 . With noting that 

0,0 ir   it means that 0iR . 

iv) If
k:m:D m:m:DX T X   , let 

J
*
T j

j 1

R D J R


   , m J , and stop. 

v) If
k:m:D m:m:DX X T  ,  let

m 1
*
m j

j 1

R D m R




   , and stop. 

vi) If
k:m:D m:m:DT X X  ,  let

k 1

K j

j 1

R D k R




   , m k   , and stop. 

vii) If  mi  , set 1 ii and  go to step 2 or else stop. 

From the simulation results in Tables 3, 4, 5,  and 6, some points are quite clear 

based on these estimates, and the others have been summarized in the following 

main points: 

i) It is clear that in general, the point estimates based on the R-K method have 

the smallest estimated RMSEs as compared to estimates based on Bayes and 

MLE methods.  

ii) The estimated value of RMSEs increases as the value of α increases and 

decreases as the value of  increases. 
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iii) The estimated RMSEs decrease with decreasing the hyperparameters of the 

informative priors. 

iv) The estimated RMSEs decrease with increasing the termination time of 

experiment T as expected. 

v) It is immediate to note that, as the sample sizes increase the estimated 

RMSEs for the parameters  decrease. 

vi) In general, the estimated RMSEs of the parameters α and  based on the 

R-K method are often less than the estimated based on the standard MLE 

and the Bayes methods. 

vii) The MLE method overestimates the actual value of the parameter ,

especially when the sample size is small and has heavily censoring. Also, it 

has a higher bias and RMSEs compared with the R-K method.  
 

As a conclusion, it appears that the point estimates based on the R-K method 

compete and outperform the standard MLE and Bayes methods.  

5. Real Data Analysis 

In this section, we studied two real data sets to demonstrate the performance of 

the proposed methods on the IW model in practice and to illustrate that this 

distribution can be considered as a good lifetime model for some new area of 

applications, comparing to many known distributions such as the Weibull 

distribution. We have fitted these datasets using some goodness of fit tests such 

as the Kolmogorov-Smirnov (K-S), Anderson-darling (A-D) and Chi-Square 

(CH2) tests for significance level test equals 0.05. Cordeiro et al. (2008) and 

Cordeiro and Lemonte (2011) provided a comprehensive study for these tests.  

a) Flood Data Application 

Consider the data given by Dumonceaux and Antle (1973), which represent the 

maximum flood levels (in millions of cubic feet per second) of the Susquehanna 

River at Harrisburg, Pennsylvania over 20 four-year periods (1890-1969) as: 

0.654,  0.613,  0.315,  0.449,  0.297,  0.402,  0.379,  0.423,  0.379,  0.324, 

0.269,  0.740,  0.418,  0.412,  0.494,  0.416,  0.338,  0.392,  0.484,  0.265 

Maswadah (2003) has fitted these data to the IWD. 

We found the inverse Weibull model is a good fit for this dataset as shown in 

Table 1 and Figure (5.1 a).For studying the behavior of the flood levels based on 

this dataset we find the estimates for the parameters which represent the shape 

and scale of the flood levelfor 20 four-year periods. We found the R-K and Bayes 

estimates for  lies in the interval [2.8, 4.4] and for lies in the interval [0.01, 

0.08]. We noticed that the R-K, Bayes, and ML estimates for  are greater than 
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one, while for  is close to zero and that indicates the graph is approximately 

symmetric, see Figure (5.2 a). These estimates indicate that the maximum flood 

levels are more stable during this period of years. 

b) Reactor Pumps Data Application 

A real dataset, for secondary nuclear pumps, has been analyzed to illustrate the 

proposed methods. An important aspect of nuclear energy is safety. One of the 

most severe accidents in nuclear power generation is the loss of coolant, where 

the re-circulating coolant of the pressurized water reactor may flash into steam. 

Under such conditions, the reactor cooling pumps become unable to generate the 

same head as that of the single-phase flow case. Thus, the secondary reactor 

pump is the feed water pump that takes from the desecrator storage tank feed 

water pressured up by the booster pump and pushes it into the steam generator 

through the high-pressure heater. Accordingly, the main feed pump must be a 

high temperature and high-pressure pump since it requires a head larger than the 

pressure inside the steam generator. The secondary circulation pump differs 

slightly in design and has been developed specifically for cooling at higher 

temperatures. The following dataset represents the times between the failure of 

the secondary reactor pumps. Singh et al., 2013, 2016 have been discussed the 

classical and Bayesian estimation methods under the Type-II censoring scheme 

of this data set. The times between failures of 23 secondary reactor pumps are as 

follows: 

 

2.160, 0.746, 0.402, 0.954, 0.491, 6.560, 4.992, 0.347, 0.150, 0.358, 0.101,1.359, 

3.465, 1.060, 0.614, 1.921, 4.082, 0.199, 0.605, 0.273, 0.070, 0.062, 5.320 

 

We found the inverse Weibull model  is a good fit for this dataset as shown in 

Table 1 and Figure (5.2c).For studying the reliability of these reactor pumps 

based on this dataset we find the estimates for the parameters which represent the 

shape and scale of the failures between pumps using our model to determine the 

behavior of the failure pumps. We noticed that the R-K, Bayes, and ML 

estimators for α lie in the interval [0.81, 0.87] and for  lies in the interval 

[0.37, 0.41]. These estimates indicate that the above dataset is heavily right-

skewed and that means the failure rate decreases with increasing time, see Figure 

(5.2d).Thus, we conclude that decreasing the reliability of safety mechanism with 

increasing time. 
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Table 1: The critical and calculated values for the K-S, A-D and CH2 tests and 

their powers (p-values) for the IWD based on the MLE's. 
 

Data The 

Tests 

Calculated     

value 

Critical    

value 

The 

p-values 

MLES 

    

Flood 

N=20 

K-S 0.6976 0.8482 0.2138 4.3141 0.0119 

A-D 0.3104 0.7414 0.5899   

CH2 3.5552 31.1109 0.3294   

Reactor 

pumps 

N=23 

K-S 0.4741 0.8528 0.8113 0.7832 0.4463 

A-D 0.3443 0.7472 0.4915   

CH2 10.270 31.5744 0.1223   

 

Table 2: The estimate and the root mean square errors (RMSEs) for the 

parameter   and  based on the R-K and Bayes  method  for  the GHPCS: for 

2/nm  , k 3m / 4.  
 

Samples  T Parameters R-K    Bayes      

MLE Estimate RMSE Estimate RMSE 

 

Flood 

Data 

N=20 

 

0.2 

  3.86273 0.29580 2.83818 0.72875 3.56693 

  0.03308 0.00370 0.08185 0.05248 0.02937 

 

0.5 

  4.40492 0.31333 2.97248 1.11911 4.09159 

  0.01793 0.00239 0.06327 0.04773 0.01554 
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Reactor 

Pumps 

Data  

N=23 

 

0.5 

  0.83827 0.00877 0.81013 0.01936 0.91589 

  0.40949 0.03295 0.41393 0.03738 0.37655 

 

5 

  0.87217 0.00889 0.84806 0.01522 0.86328 

  0.38419 0.03304 0.37928 0.02813 0.35115 

 

6. Conclusions 

In this paper, it has been noticed that from our simulation study the bias of the R-

K estimate is close to zero and much more efficient than the standard ML and the 

Bayes estimates even when using the informative prior. However, the standard 

ML estimation bias can be large and remains noticeable even when the sample 

sizes are too large. It increases rapidly with increasing the degree of censorship, 

based on the generalized progressive hybrid-censoring scheme. 
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Table 3: The estimate and the root mean square errors (RMSEs) for the 

parameter   based on the improved MLE, Bayes and MLE  methods with  

m =  (n/2 and 3n/4), k=m/2 and T=0.75. 
n                    m IMLE    Bayes     MLE  

Estimate RMSE Estimate RMSE Estimate RMSE 

 

 

 
 

 

 
20 

0.5929 1.1077 n/2 0.6886 0.1107 0.5894 0.1259 0.7564 0.3444 

3n/4 0.6644 0.0852 0.5837 0.1136 0.6726 0.1998 

1.9737 n/2 0.6241 0.0575 0.5265 0.1267 0.7686 0.3474 

3n/4 0.6210 0.0407 0.5375 0.1128 0.6784 0.2009 

1.1077 1.1077 n/2 1.2394 0.1632 1.0252 0.1881 1.3967 0.6125 

3n/4 1.2190 0.1338 1.0409 0.1787 1.2569 0.3611 

1.9737 n/2 1.1589 0.0976 0.9216 0.2401 1.3950 0.5930 

3n/4 1.1445 0.0647 0.9698 0.2089 1.2689 0.3982 

1.9737 1.1077 n/2 2.1994 0.3103 1.7467 0.3223 2.4941 1.1169 

3n/4 2.1559 0.2473 1.8022 0.2974 2.2710 0.6613 

1.9737 n/2 1.9845 0.1928 1.6091 0.4173 2.5423 1.1968 

3n/4 1.9913 0.1298 1.6886 0.3588 2.2766 0.6715 

 
 

 

 
 

 

   
40 

0.5929 1.1077 n/2 0.6950 0.1107 0.6034 0.1062 0.6554 0.1574 

3n/4 0.6679 0.0822 0.5973 0.0869   0.6301 0.1114 

1.9737 n/2 0.6388 0.0571 0.5633 0.0986 0.6581 0.1581 

3n/4 0.6181 0.0316 0.5694 0.0860 0.6296 0.1133 

1.1077 1.1077 n/2 1.2624 0.1681 1.0968 0.1708 1.2414 0.3071 

3n/4 1.2249 0.1298 1.0997 0.1535 1.1915 0.2227 

1.9737 n/2 1.1729 0.0941 1.0107 0.1804 1.2193 0.2969 

3n/4 1.1446 0.0524 1.0438 0.1542 1.1829 0.2173 

1.9737 1.1077 n/2 2.2172 0.2926 1.8789 0.2585 2.1883 0.5094 

3n/4 2.1500 0.2150 1.8893 0.2441 2.0879 0.3628 

1.9737 n/2 1.9829 0.1663 1.7653 0.3103 2.1831 0.5146 

3n/4 2.0009 0.0953 1.8179 0.2671 2.1002 0.3714 

 
 

 

 
 

 

   
60 

0.5929 1.1077 n/2 0.6949 0.1078 0.6007 0.0906 0.6300 0.1152 

3n/4 0.6703 0.0823 0.5945 0.0736 0.6136 0.0851 

1.9737 n/2 0.6399 0.0549 0.5744 0.0847 0.6337 0.1139 

3n/4 0.6209 0.0333 0.5755 0.0733 0.6150 0.0873 

1.1077 1.1077 n/2 1.2661 0.1675 1.0972 0.1504 1.1805 0.2153 

3n/4 1.2294 0.1299 1.0923 0.1314 1.1465 0.1619 

1.9737 n/2 1.1708 0.0836 1.0405 0.1514 1.1753 0.2063 

3n/4 1.1473 0.0513 1.0655 0.1277 1.1583 0.1626 

1.9737 1.1077 n/2 0.2352 0.2919 1.9088 0.2425 2.1043 0.3784 

3n/4 0.1652 0.2181 1.9205 0.2137 2.0485 0.2811 

1.9737 n/2 1.9869 0.1361 1.8168 0.2728 2.0959 0.3912 

3n/4 1.9958 0.0782 1.8714 0.2316 2.0677 0.3065 

 

 
 

 

 
 

   

100 

0.5929 1.1077 n/2 0.6989 0.1094 0.5991 0.0693 0.6139 0.0796 

3n/4 0.6728 0.0829 0.5979 0.0576 0.6084 0.0632 

1.9737 n/2 0.6413 0.0539 0.5815 0.0720 0.6149 0.0853 

3n/4 0.6212 0.0315 0.5839 0.5838 0.6075 0.6545 

1.1077 1.1077 n/2 1.2687 0.1665 1.1062 0.1299 1.1520 0.1613 

3n/4 1.2329 0.1308 1.1046 0.1017 1.1355 0.1165 

1.9737 n/2 1.1702 0.0765 1.0684 0.1218 1.1459 0.1467 

3n/4 1.1479 0.0479 1.0788 0.1021 1.1331 0.1160 

1.9737 1.1077 n/2 2.2371 0.2849 1.9362 0.2124 2.0459 0.2764 

3n/4 2.1773 0.2193 1.9396 0.1759 2.0137 0.2058 

1.9737 n/2 1.9917 0.1130 1.8880 0.2132 2.0573 0.2741 

3n/4 1.9967 0.0641 1.9049 0.1858 2.0202 0.2139 
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Table 4: The estimate and the root mean square errors (RMSEs) for the 

parameter   based on the improved MLE , Bayes and MLE  methods with  

m=  (n/2 and 3n/4), k=3m/4 and T=1.5. 
n        M IMLE    Bayes     MLE  

Estimate RMSE Estimate RMSE Estimate RMSE 

 

 
 

 

 
 

20 

0.5929 1.1077 n/2 0.6886 0.1107 0.5846 0.1224 0.7149 0.2695 

3n/4 0.6644 0.0852 0.5837 0.1136 0.6726 0.1998 

1.9737 n/2 0.6341 0.0575 0.5268 0.1253 0.7191 0.2789 

3n/4 0.6210 0.0407 0.5388 0.1134 0.6737 0.1972 

1.1077 1.1077 n/2 1.2394 0.1632 1.0342 0.1851 1.3576 0.5144 

3n/4 1.2190 0.1338 1.0510 0.1786 1.2739 0.3751 

1.9737 n/2 1.1589 0.0976 0.9317 0.2333 1.3389 0.4979 

3n/4 1.1445 0.0647 0.9684 0.2054 1.2621 0.3606 

1.9737 1.1077 n/2 2.1994 0.3102 1.7561 0.3141 2.3818 0.8974 

3n/4 2.1559 0.2473 1.8011 0.2856 2.2594 0.6227 

1.9737 n/2 1.9845 0.1928 1.6252 0.4071 2.4073 0.9105 

3n/4 1.9914 0.1298 1.6728 0.3646 2.2679 0.6614 

 

 

 
 

 

 
   

40 

0.5929 1.1077 n/2 0.6884 0.1052 0.5148 0.1074   0.5379 0.1073 

3n/4 0.6679 0.0822 0.5959 0.0889    0.6281 0.1129 

1.9737 n/2 0.6327 0.0530 0.5395 0.1015 0.6287 0.1398 

3n/4 0.6181 0.0316 0.5700 0.0852 0.6315 0.1144 

1.1077 1.1077 n/2 1.2392 0.1498 0.8872 0.2431 0.9347 0.2225 

3n/4 1.2249 0.1299 1.0951 0.1562 1.1861 0.2238 

1.9737 n/2 1,1456 0.0823 0.9408 0.2079 1.1169 0.2219 

3n/4 1.1446 0.0524 1.0420 0.1504 1.1805 0.2069 

1.9737 1.1077 n/2 2.1252 0.2423 1.4389 0.5507 1.4896 0.5223 

3n/4 2.1526 0.2150 1.8954 0.2538 2.0989 0.3855 

1.9737 n/2 1.8531 0.2245 1.5380 0.4642 1.8218 0.3606 

3n/4 2.0009 0.0953 1.8233 0.2700 2.1091 0.3899 

 

 
 

 

 
 

   

60 

0.5929 1.1077 n/2 0.6955 0.1083 0.6016 0.0873 0.6301 0.1109 

3n/4 0.6703 0.0823 0.5955 0.0725 0.6146 0.0844 

1.9737 n/2 0.6399 0.0549 0.5733 0.0841 0.6297 0.1099 

3n/4 0.6209 0.0333 0.5731 0.0769 0.6119 0.0903 

1.1077 1.1077 n/2 1.2661 0.1675 1.0957 0.1492 1.1751 0.2087 

3n/4 1.2294 0.1299 1.1009 0.1293 1.1565 0.1633 

1.9737 n/2 1.1709 0.0838 1.0426 0.1524 1.1713 0.2051 

3n/4 1.1473 0.0513 1.0590 0.1301 1.1500 0.1593 

1.9737 1.1077 n/2    2.2347 0.2915 1.9022 0.2345 2.0851 0.3499 

3n/4    2.1652 0.2181 1.9329 0.2184 2.0660 0.2976 

1.9737 n/2 1.9869 0.1359 1.8278 0.2663 2.1021 0.3774 

3n/4 1.9958 0.0782 1.8574 0.2368 2.0477 0.2938 

 
 

 

 
 

 

   
100 

0.5929 1.1077 n/2 0.6925 0.1035 0.5041 0.1011 0.5096 0.0983 

3n/4 0.6728 0.0829   0.5969 0.0585 0.6073 0.0640 

1.9737 n/2 0.6348 0.0485 0.5626 0.0702 0.5947 0.0744 

3n/4 0.6212 0.0315 0.5833 0.0555 0.6063 0.0618 

1.1077 1.1077 n/2 1.2440 0.1442 0.8747 0.2446 0.8875 0.2354 

3n/4 1.2329 0.1307 1.0999 0.1004 1.1304 0.1137 

1.9737 n/2 1.1399 0.0579 0.9939 0.1519 1.0633 0.1330 

3n/4 1.1479 0.0479 1.0804 0.1058 1.1348 0.1213 

1.9737 1.1077 n/2 2.1399 0.2112 1.4004 0.5814 1.4091 0.5757 

3n/4 2.1773 0.1930 1.9431 0.1766 2.0178 0.2081 

1.9737 n/2 1.8486 0.1798 1.6013 0.3956 1.7129 0.3148 

3n/4 1.9967 0.0641 1.9053 0.1864 2.0209 0.2152 
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Table 5: The estimate and the root mean square errors (RMSEs) for the 

parameter   based on the improved MLE, Bayes and MLE  methods with  

m=  (n/2 and 3n/4), k=3m/4 and T=0.75. 
n                     m IMLE    Bayes     MLE  

Estimate RMSE Estimate RMSE Estimate RMSE 

 
 

 

 
 

 

20 

0.5929 1.1077 n/2 1.2243 0.1329 0.9735 0.2167 1.0655 0.3799 

3n/4 1.2173 0.1241 0.9850 0.2039 1,1446 0.3332 

1.9737 n/2 2.1057 0.1488 1.6592 0.3713 2.2149 0.8997 

3n/4 2.0871 0.1269 1.6776 0.3594 2.2444 0.8151 

1.1077 1.1077 n/2 1.2457 0.1491 0.9965 0.1933 1.0750 0.3719 

3n/4 1.2426 0.1463 0.9913 0.1974 1.1427 0.3747 

1.9737 n/2 2.1665 0.2032 1.6677 0.3569 2.2282 0.9858 

3n/4 2.1549 0.1934 1.6542 0.3748 2.1934 0.8280 

1.9737 1.1077 n/2 1.2995 0.2011 1.0072 0.1780 1.0688 0.3681 

3n/4 1.2978 0.1999 0.9976 0.1878 1.1313 0.3332 

1.9737 n/2 2.2875 0.3263 1.6528 0.3681 2.2051 1.0027 

3n/4 2.2659 0.3059 1.6587 0.3714 2.2318 0.8713 

 
 

 

 
 

 

   
40 

0.5929 1.1077 n/2 1.2235 0.1236 1.0251 0.1837   1.0883 0.2442 

3n/4 1.2178 0.1174 1.0383 0.1686 1.1246 0.2197 

1.9737 n/2 2.1009 0.1345 1.7990 0.2704 2.0804 0.4324 

3n/4 2.0908 0.1247 1.7867 0.2829 2.0563 0.3976 

1.1077 1.1077 n/2 1.2431 0.1404 1.0430 0.1684 1.0913 0.2414 

3n/4 1.2411 0.1387 1.0468 0.1572 1.1238 0.2132 

1.9737 n/2 2.1667 0.1981 1.7951 0.2739 2.0858 0.4762 

3n/4 2.1558 0.1874 1.7729 0.2820 2.0384 0.3804 

1.9737 1.1077 n/2 1.2989 0.1960 1.0548 0.1529 1.0918 0.2285 

3n/4 1.2990 0.1959 1.0488 0.1546 1.1174 0.2140 

1.9737 n/2 2.2839 0.3155 1.7776 0.2729 2.0505 0.4171 

3n/4 2.2674 0.2999 1.7782 0.2799 2.0571 0.3945 

 

 

 
 

 

 
   

60 

0.5929 1.1077 n/2 1.2213 0.1179 1.0517 0.1562 1.0979 0.1913 

3n/4 1.2184 0.1151 1.0507 0.1472 1.1076 0.1716 

1.9737 n/2 2.1039 0.1352 1.8397 0.2403 2.0197 0.3111 

3n/4 2.0899 0.1213 1.8477 0.2396 2.0353 0.3141 

1.1077 1.1077 n/2 1.2439 0.1396 1.0644 0.1388 1.0996 0.1773 

3n/4 1.2424 0.1378 1.0651 0.1388 1.1179 0.1712 

1.9737 n/2 2.1672 0.1968 1.8496 0.2289 2.0384 0.3159 

3n/4 2.1547 0.1848 1.8363 0.2379 2.0231 0.2995 

1.9737 1.1077 n/2    .3009 0.1965 1.0669 0.1419 1.0899 0.1881 

3n/4    .2992 0.1946 1.0642 0.1338 1.1088 0.1654 

1.9737 n/2 2.2831 0.3128 1.8381 0.2285 2.0236 0.3057 

3n/4 2.2643 0.2944 1.8489 0.2312 2.0494 0.3233 

 
 

 

 
 

 

   
100 

0.5929 1.1077 n/2 1.2217 0.1165 1.0686 0.1247 1,0982 0.1396 

3n/4 1.2170 0.1123 1.0761 0.1207 1.1127 0.1344 

1.9737 n/2 2.1038 0.1328 1.8849 0.1929 1.9932 0.2221 

3n/4 2.0888 0.1182 1.8943 0.1939 2.0079 0.2270 

1.1077 1.1077 n/2 1.2444 0.1387 1.0782 0.1258 1.1004 0.1469 

3n/4 1.2418 0.1362 1.0795 0.1105 1.1117 0.1243 

1.9737 n/2 2.1699 0.1984 1.8814 0.1964 1.9912 0.2281 

3n/4 2.1522 0.1808 1.8944 0.1897 2.0111 0.2245 

1.9737 1.1077 n/2 1.2994 0.1935 1.0841 0.1118 1.0989 0.1341 

3n/4 1.2974 0.1916 1.0855 0.1459 1.1141 0.1324 

1.9737 n/2 2.2822 0.3107 1.8922 0.1919 2.0078 0.2363 

3n/4 2.2649 0.2935 1.8913 0.1877 2.0102 0.2228 

 



An Optimal Point Estimation Method… 
 

21 

Table 6: The estimate and the root mean square errors (RMSEs) for the 

parameter   based on the improved MLE, Bayes and MLE  methods  with  

m= (n/2 and 3n/4), k=3m/4 and T=1.5. 
n                     m IMLE    Bayes     MLE  

Estimate RMSE Estimate RMSE Estimate RMSE 

 
 

 

 
 

 

20 

0.5929 1.1077 n/2 1.2143 0.1228 0.9735 0.2167 1.0655 0.3799 

3n/4 1.2078 0.1142 0.9850 0.2039 1.1446 0.3332 

1.9737 n/2 2.0911 0.1331 1.6392 0.3714 2.2149 0.8997 

3n/4 2.0823 0.1240 1.6522 0.3795 2,1610 0.7413 

1.1077 1.1077 n/2 1.2068 0.1051 1.2557 0.2008 1.5534 0.5245 

3n/4 1.2267 0.1282 0.9898 0.1959 1.1333 0.3398 

1.9737 n/2 2.1437 0.1794 1.6677 0.3569 2.2282 0.9838 

3n/4 2.1309 0.1673 1.6617 0.3681 2.1984 0.7252 

1.9737 1.1077 n/2 1.2445 0.1412 1.3292 0.2538 1.7061 0.6459 

3n/4 1.2771 0.1779 0.9929 0.1939 1.1253 0.3512 

1.9737 n/2 2.2488 0.2859 1.6554 0.3659 2.2157 1.0158 

3n/4 2.2299 0.2674 1.6603 0.3698 2.2426 0.9419 

 
 

 

 
 

 

   
40 

0.5929 1.1077 n/2 1.2135 0.1134 1.0251 0.1837    1.0883 0.2446 

3n/4 1.2082 0.1076 1.0383 0.1686 1.1246 0.2197 

1.9737 n/2 2.0867 0.1199 1.7990 0.2704 2.0803 0.4324 

3n/4 2.0771 0.1099 1.7863 0.2816 2.0554 0.3956 

1.1077 1.1077 n/2 1.2286 0.1255 1.0430 0.1689 1.0916 0.2418 

3n/4 1.2284 0.1259 1.0414 0.1669 1.1655 0.2226 

1.9737 n/2 2.1439 0.1748 1.7951 0.2739 2.0858 0.4762 

3n/4 2.1315 0.1625 1,7869 0.2783 2.0684 0.4237 

1.9737 1.1077 n/2 1.2779 0.1745 1.0532 0.1537 1.0896 0.2293 

3n/4 1.2772 0.1744 1.0467 0.1557 1.1125 0.2138 

1.9737 n/2 2.2475 0.2784 1.7759 0.2729 2.0463 0.4121 

3n/4 2.2331 0.2649   1.7784 0.2816 2.0579 0.3999 

 

 
 

 

 
 

60 

0.5929 1.1077 n/2 1.2113 0.1078 1.0517 0.1562 1.0979 0.1913 

3n/4 1.2087 0.1053 1.0507 0.1472 1.1076 0.1716 

1.9737 n/2 2.0895 0.1205 1.8397 0.2403 2.0197 0.3111 

3n/4 2.0784 0.1098 1.8466 0.2357 2.0328 0.3044 

1.1077 1.1077 n/2 1.2036 0.0977 1.4599 0.3681 1.5874 0.4879 

3n/4 1.2276 0.1231 1.0647 0.1435 1.1173 0.1767 

1.9737 n/2 2.1444 0.1737 1.8496 0.2289 2.0384 0.3159 

3n/4 2.1323 0.1619 1.8435 0.2335 2.0342 0.3049 

1.9737 1.1077 n/2    1.2559 0.1503 1.3628 0.2920 1.4789 0.4139 

3n/4 1.2752 0.1705 1.0751 0.1315 1.1224 0.1672 

1.9737 n/2 2.2458 0.2751 1.8394 0.2275 2.0259 0.3067 

3n/4 2.2330 0.2625 1.8343 0.2311 2.0239 0.2930 

 

 

 
 

 

 
   

100 

0.5929 1.1077 n/2 1.1884 0.0823 1.4047 0.3122 1.5729 0.3814 

3n/4 1.2083 0.1034   1.0730 0.1149 1.1091 0.1262 

1.9737 n/2 2.0894 0.1182 1.8849 0.1929 1.9932 0.2221 

3n/4 2.0775 0.1066 1.8864 0.1925 1.9977 0.2189 

1.1077 1.1077 n/2 1.2297 0.1238 1.0782 0.1258 1.1004 0.1469 

3n/4 1.2278 0.1220 1.0802 0.1152 1.1128 0.1303 

1.9737 n/2 2.1469 0.1751 1.8814 0.1964 1.9912 0.2281 

3n/4 2.1309 0.1591 1.8966 0.1841 2.0136 0.2189 

1.9737 1.1077 n/2 1.2536 0.1471 1.4335 0.3631 1.5101 0.4439 

3n/4 1.2769 0.1709 1.0821 0.1106 1.1099 0.1265 

1.9737 n/2 2.2455 0.2738 1.8922 0.1909 2.0077 0.2348 

3n/4 2.2311 0.2595 1.8895 0.1877 2.0079 0.2211 
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Figure 5(a): a) The Empirical CDF and the fitted CDF for the Flood Data. 

 b) The Histogram and the fitted PDF for the Flood Data. 

 
 

 

 

 
Figure 5(b): c) The Empirical CDF and the fitted CDF for the Reactor Pumps Data. 

 d) The Histogram and the fitted PDF for the Reactor Pumps Data. 
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