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 ABSTRACT  

In this paper, we consider the problem of estimation of         , 

when       follows bivariate normal distribution. The Maximum 

likelihood estimates and Bayes estimates (BEs) of   are obtained based on 

record values and its concomitants. BEs are obtained based on both 

symmetric and asymmetric loss functions. The bootstrap and credible 

confidence intervals for   are also obtained. Monte Carlo simulations are 

carried out to study the accuracy of the proposed estimators. A real data 

set is also used to illustrate the inferential procedures developed in this 

paper. 

1. Introduction 

In the context of reliability the stress-strength model describes the life of a 

component which has a random strength   and is subjected to a random stress  . 

The component fails at the instant that the stress applied to it exceeds the strength 

and the component will function satisfactorily whenever    . Thus   

       is a measure of component reliability. Nowadays the stress-strength 

relationship is studied in many branches of sciences and social sciences such as 

psychology, medicine, pedagogy, pharmaceutics and engineering. It has many 

applications especially in engineering concepts such as structures, deterioration 

of rocket motors, static fatigue of ceramic components, fatigue failure of aircraft 

structures and the aging of concrete pressure vessels. Some examples are as 

follows (see, Nadarajah and Kotz, 2006). If   represents the maximum chamber 

pressure generated by ignition of a solid propellant and   represents the strength 

of the rocket chamber, then   is the successful firing of the engine. Let   and   

be the remission times of two chemicals when they are administered to two kinds 

of mechanical systems, then inferences about   present a comparison of the 
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effectiveness of the two chemicals. If   and   are future observations on the 

stability of an engineering design, then   would be the predictive probability that 

  is less than  . Similarly, if   and   represent lifetimes of two electronic 

devices, then   is the probability that one fails before the other.  

The estimation of   has been extensively investigated in the literature when   

and   are independent random variables belonging to the same family of 

distributions. However, there is a relative little work when   and   are dependent 

random variables. The problem of estimating  , when the stress and strength are 

dependent, was considered by Abu-Salih and Shamseldin (1988), Samawi et al. 

(2016), Awad et al. (1981), Jana and Roy (1994) and Cramer (2001). Estimation 

of   when       follows bivariate normal has been discussed by Enis and 

Geisser (1971) and Mukherjee and Saran (1985). Jana(1994) and Hanagal (1995) 

discussed the estimation procedure of   when       follows Marshall-Olkin 

bivariate exponential distribution. Hanagal (1997) discussed the estimation of   

when       has a bivariate Pareto distribution. Nguimkeu et al. (2014) 

considered interval estimation of stress-strength reliability with bivariate normal 

variables. Recent advances on Bayesian inference for        have been 

discussed by Ventura and Recugno (2011).  

The applications of          are not limited to reliability and engineering, 

it has lot of applications in medicine, psychology, environmental studies etc. For 

example in medical studies, if   and   represent the outcome of control and 

experimental treatments, then   can be interpreted as the effectiveness of the 

treatment. In the study of water quality in freshwater, if   represents the 

concentration of dissolved trace metals such as zinc, copper or lead in water and 

  represents the corresponding worldwide water quality standards of that metal 

in water, then            can be considered as the probability that the 

metal concentration in freshwater is lower than the corresponding worldwide 

standard. 

Record value data arise in a wide variety of practical situations. Examples 

include destructive stress testing, meteorological analysis, hydrology, 

seismology, sporting and athletic events and oil and mining surveys. Interest in 

records has increased steadily over the years since Chandler (1952) formulation. 

Let          be a sequence of independent and identically distributed (iid) 

random variables having an absolutely continuous cumulative distribution 

function (cdf)      and probability density function (pdf)     . An observation 

   is called an upper record if       for every    . In an analogous way, we 
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can define lower record values. Useful surveys on record values are given in 

Ahsanullah (1995) and Arnold et al. (1998). Let        ,        ,  be a 

sequence of iid bivariate random variables with common continuous joint cdf 

      ,            Let       and       be the marginal cdfs of   and   

respectively. Let        be the sequence of upper record values arising from 

the sequence of  ’s. Then the  -variate associated with the X-value, which is 

qualified as the  th record will be called the concomitant of the  th record and 

will be denoted by        For a detailed discussion on the distribution theory of 

record values and concomitants of record values see, Arnold et al. (1998), 

Ahsanullah and Nevzorov (2000), Ahsanullah and Shakil (2013), Khan and 

Arshad (2016) and Arshad and Jamal (2019). Chacko and Thomas (2006, 2008) 

considered the problem of estimation of parameters of Morgenstern type 

bivariate logistic distribution and bivariate normal distribution based on 

concomitants of record values. The joint pdf of first   upper record values and its 

concomitants                         ,            ),               is given 

by  

                                                                (1.1)  

 where                            is the joint pdf of first   upper record values and 

is given by  

                                    

   

   

       

         
  

Suppose in an experiment, individuals are measured based on an inexpensive test 

and only those individuals whose measurement breaks the previous records are 

retained for the measurement based on an expensive test, then the resulting data 

involves record values and concomitants of record values. 

In this paper, we focus on estimation of          based on record values 

and its concomitants, when       follows bivariate normal distribution (BVND). 

A random variable       follows BVND if its pdf is given by  

        

 

 
 

 

           
    

  

       
  
    

  
      

    

  
  
    

  
   

    

  
     

              
 
  

 
                 

           

     

 (1.2) 

If       follows BVND with pdf defined in (1.2), then   is given by  



Manoj Chacko and Shiny Mathew 

104 

          

    
     

   
    

        

    (1.3)  

where   is the cdf of standard normal distribution. If we denote   

                as the vector of parameters then we can write  

        

   
     

   
    

        
   

In this paper, first we consider the maximum likelihood estimation of   for 

BVND based on record values and its concomitants. The maximum likelihood 

method is the most widely used estimation method. However, in many practical 

situations, occurrences of record values are very rare and sample sizes are often 

very small. Thereby maximum likelihood estimator (MLE) may produce 

substantial bias and also intervals based on the asymptotic normality of MLEs do 

not perform well. Hence in this paper we also consider Bayesian estimation of   

for BVND based on record values and its concomitants. 

The organization of the paper is as follows. In section 2, we consider the 

maximum likelihood estimation of   using record values and its concomitants. 

The bootstrap confidence intervals based on MLE are also included in this 

section. In section 3, we consider the Bayesian estimation of   using importance 

sampling method. Section 4 is devoted to some simulation studies. In section 5 a 

real data on water quality is considered for illustration and finally in section 6 we 

give some concluding remarks.  

2. Maximum Likelihood Estimation 

In this section, we obtain the MLE of   for BVND given in (1.2) using record 

values and its concomitants. Let                       be the first   upper 

record values and its concomitants arising from BVND with parameters 

               . Then from (1.1) the likelihood function is given by  

                    
   

 

           
   

  

       
  
       

  
   

                                        
       

  
  
       

  
   

       

  
    

     
   

 

     
       

  
   
   (2.1) 

Then the log-likelihood function is given by  
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For notation convenience, we denote    
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Then the normal equatios are  
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The MLEs of   ,   ,   ,   and   can be obtained by solving the above non-

linear equations using the Newton-Raphson method or any other numerical 

methods. Let    ,    ,    ,     and    be the MLEs of   ,   ,   ,    and   obtained 

by solving the non-linear equations, then the MLE of   is given by  

        
       

    
     

           

    (2.2) 

Remark 2.1 : In many practical situations, occurrences of record values are very 

rare and sample sizes are often very small. Thereby intervals based on the 

asymptotic normality of MLEs do not perform well. Hence in the next subsection 

we obtain bootstrap confidence intervals for R.  



Manoj Chacko and Shiny Mathew 

106 

2.1 Bootstrap Confidence Intervals 

In this subsection, we consider bootstrap confidence intervals (CIs) for   based 

on MLEs. We consider both percentile and bias-corrected & accelerated (BCa) 

confidence intervals for  . For more details on bootstrap confidence intervals 

see, Carpenter and Bithell (2000). The algorithm for bootstrap CIs is the 

following;   

1.  Compute the MLEs    
   

,    
   

,   
   

,   
   

,      of            ,  using 

original observations and find the MLE     .  

2.  Generate a bootstrap sample using    
   

,    
   

,    
   

,    
   

,       and obtain 

the MLEs    
   

,    
   

,    
   

,    
   

,       using the bootstrap sample. 

3.  Obtain the MLE of          
       

       
       

          .  

4.  put      .  

5.  Repeat steps (2) to (4) B times to have     for           

6.  Arrange     for           in ascending order as                       

Then   

(a) The 100      percentile bootstrap CI for   is given by 

                             .  

(b) The 100      bootstrap BCa CI for   is given by  

                           
 
        , where  

         
        

              
           

          

                
  

and 

        
          

 
     

   
      

           

                 
 

 

 

 with          
   

     

 
 and       being the estimate of   calculated on the original 

sample with the  th couple of observations deleted. 

3. Bayesian Estimation 

In this section, we consider Bayesian estimation of   for BVND under 

symmetric as well as asymmetric loss functions. A symmetric loss function is the 

squared error loss (SEL) function which is defined as  

                           
 
   (3.1) 
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where       is an estimate of     . The Bayes estimate of   under    is the 

posterior mean of  . An asymmetric loss function is the LINEX loss (LL) 

function which is defined as  

                   
                                 (3.2) 

The Bayes estimate of      for the loss function    can be obtained as  

 

     
  

 
        

          (3.3)  

provided    exists. 

Let                       be the vector of record values and its concomitants 

arising from BVND               . Then from (2.1) the likelihood function is 

given by 

                   

 

   

 

           
   

  

       
  
       

  
   

 

       
       

  
  

       

  
   

       

  
    

 

      
   

 

     
       

  
  
   (3.4) 

Assume that the prior distributions of               
  ,               

  , 

  
                      ,  

                       and          . 

Therefore the prior density functions of             and   are respectively given 

by  
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Thus the joint prior distribution of             and   is given by  
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Then the joint posterior density of  =(  ,        , ) given the data is 

 

            
        

  
 
          

   (3.10) 

 

Therefore the Bayes estimate of      under SEL and LL are respectively given 

by  

        
  
 
              

  
 
          

   (3.11) 
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    (3.12) 

             
It is not possible to compute (3.11) and (3.12) explicitly. Thus we propose 

importance sampling method to find the Bayes estimates for  . 

  

3.1  Importance Sampling Method 

In this subsection, we consider the sequential importance sampling method to 

generate samples from the posterior distribution and then find the Bayes estimate 

of   (see, Tokdar and Kass, 2010). The numerator in the posterior distribution 

given in (3.10) can be written as  
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    (3.18) 

 

Here    
 

 
   
       ,    

 

 
   
       ,    

 

 
   
              and    

 

 
   
             . From (3.14) to (3.18) we can see that  
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Let         
   
   

   
   

   
   

   
      ,           be the observations 

generated from (3.14) to (3.18) respectively. Then by importance sampling 

method the Bayes estimators under SEL and LL given by (3.11) and (3.12) can 

be obtained as  
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    (3.20) 

 

3.2  HPD Interval 

In this subsection, we construct HPD interval under SEL for   as described in 

Chen and Shao (1999). Define           , where      for           are 

posterior samples generated respectively from (3.14) to (3.18) for             

and  . Define  
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where         is given in (3.13). Let      be the ordered values of   . Then the 

 th quantile of   can be estimated as  

      

 

 

             

                

   

   

         

 

   

     
  

 

where      is the weight function associated with  th ordered value     . Then 

the          ,      , confidence interval for   is given by 

                            ,                   , where [.] is the greatest 

integer function. Then the required HPD interval for   is the interval with 

smallest width. 

4. Simulation Study 

In this section, we carry out a simulation study for illustrating the estimation 

procedures developed in previous sections. First we obtain the MLE of   using 

(2.2). We have obtained the bias and MSE of MLEs for different combinations of 

      and   and are provided in table 1. The bootstrap CIs for   are also 

obtained. The average interval length (AIL) and coverage probability (CP) are 

also obtained and are included in table 1. For the simulation study for Bayesian 

estimation we took both informative and non-informative priors. We have 

considered two sets of informative priors, say Prior I and Prior II. The hyper 

parameters for Prior I and Prior II are given below. 

Prior I :      ,      ,      ,       ,      and        

Prior II :      ,      ,    ,    ,    and    . 

The values of       and   for Prior I and Prior II are chosen such that the means 

of   
  and   

  are fixed (equal to 1) and variances are high (Prior I) and low (Prior 

II). The non-informative prior is obtained by taking      ,      ,    , 

   ,    and    . We have obtained the Bayes estimator for   of BVND 

distribution under SEL and LL (with h=1) functions. The simulation studies were 

performed in R-program. For finding MLEs we used     function in R. For the 

simulation studies for Bayes estimators we use the following algorithm. 

 

1. Generate   upper record values and its concomitants from BVND 

distribution with parameters                  . 
2. Calculate estimator of   using the generated values using importance 

sampling method as described below.   

(a)  Put     

(b)  Generate      from        .  
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(c)  Generate    
   
   from    
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(d)  Generate    
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(e)  Generate   
   

 from   
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(f)  Generate   
   

 from   
            

      

             
 
   

   
             

             
 .  

(g)  Calculate         using (5) and         using (3.13) 

(h)  set      .  

(i)  Repeat steps (b) to (h) 50,000 times  

(j)  Calculate the Bayes estimators for   using (3.19)-(3.20).  

3.  Repeat steps 1 and 2 for 500 times.  

4.  Calculate the bias and MSE of the estimators.  

We repeat the simulation procedure for different values of       and   by fixing 

     and     . The bias and MSE of Bayes estimators for different 

combinations of       and   for informative priors are given in table 2 and those 

of non-informative prior are given in table 3. We have obtained the HPD interval 

for   under SEL using non-informative prior. The AIL and CP for HPD interval 

are included in table 1. From the tables we have the following conclusions. The 

bias and MSE of all estimators decrease when the number of records   increases. 

Among the Bayes estimators, estimators under SEL function perform better than 

LL function in terms of bias and MSE. The bias and MSE of non-informative 

priors are smaller than that of informative priors. Also Bayes estimators under 

non-informative prior perform better than MLEs. The AILs of HPD intervals are 

smaller and the associated CPs are higher than that of percentile and BCa 

bootstrap confidence intervals. 

5.  Illustration Using Real Data 

In this section, we illustrate the inferential procedures on          

developed in the previous sections using a real data. For that, we consider a study 

given in Hoffman and Johnson (2015) on water quality level of fresh water 

streams across the commonwealth of Virginia in USA. They compared the 

concentration levels of certain dissolved trace metals in freshwater to the 

worldwide standards using a well defined index function. The Virginia 
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Department of Environmental Quality (VDEQ) provided the data, which is 

available in the supplementary materials of Hoffman and Johnson (2015). The 

data set consist of concentration level of copper (Cu), lead (Pb), zinc (Zn) 

calcium (Ca) and magnesium (Mg) in freshwater streams of 184 independent 

probabilistic sites across Virginia. For the present study we take only one trace 

metal zinc and other two metals Ca and Mg which are used to find the worldwide 

quality standard of Zn. Since some observations on concentration levels of zinc 

are censored, we take the remaining 103 uncensored observations. Then the 

problem is to compare the metal concentration level of Zn in freshwater by its 

worldwide quality standard. The quantification of concentration level of Zn in 

freshwater is difficult and costly where as the quantification of other metals such 

as Ca and Mg are comparatively easy. Since water quality standard for Zn is a 

function of Ca and Mg, it can be determined easily. Therefore, we take water 

quality standard of Zn as X variate and concentration level of Zn in freshwater as 

Y variate. We want to estimate the probability that concentration level of Zn in 

freshwater is less than that of the worldwide quality standard of Zn in water. That 

is       , which is equivalent to         . 

Let    and    be the concentration level (mg/L) of Ca and Mg in fresh water 

then the water quality standard for Zn is given by  

                 

where   is the hardness factor             from Ca and Mg and is given by 

                  
 

Hoffman and Johnson (2015) assumes a 5 variate lognormal distribution to the 

original data. Here we fit lognormal distributions to both   and  . The K-S test 

statistics for   and   are 0.1713 and 0.1472 with corresponding p values are 

0.2561 and 0.4307. Since   and   follow lognormal distributions we take 

logarithm of   and   to get the observations from normal distributions. The first 

6 upper record values on   and its concomitants obtained from the data set are 

 
   1   2  3  4  5  6  

    0.127105   0.477121   0.737987   0.863323   1.079181   1.278754  

      1.53033   1.625011   1.594354   1.458808   1.836765   1.412407  

 

We have obtained the MLE, Bayes estimators and CIs of        based on 

first 6 record values on   variates and its concomitants on   variates and are 

given below.  



Estimation of P(X>Y) Based on Records for Bivariate…. 

113 

 

MLE 
 Bayes estimates   Confidence Interval 

 SEL   LL   percentile  BCa  HPD  

0.9982   0.9853   0.9862   (0.9826,1)   (0.9812,0.9996)  (0.9781,0.9984)  

 

For Bayes estimation we use non-informative priors for the parameters. Since the 

estimated values of        is more or less      for all the cases, we can claim 

that the concentration level of zinc in freshwater across Virginia is relatively 

much lower than the worldwide quality standard of zinc in water. 
 

6. Conclusion 

In this work, we have considered the problem of estimation of          for 

bivariate normal distribution using record values and its concomitants. The 

maximum likelihood and Bayesian estimators have been obtained for  . For 

obtaining the Bayes estimates, importance sampling method has been applied. 

Based on the simulation study we have concluded that among the estimators, 

Bayes estimators under squared error loss function perform better in terms of bias 

and MSE. Also Bayes estimators under non-informative priors perform better 

than the corresponding Bayes estimators under informative priors. AILs of HPD 

intervals are smaller and the associated CPs are higher than that of bootstrap 

confidence intervals. 

Table  1: The bias & MSE of MLEs for   and AIL & CP for CIs. 

  n       R MLE Percentile CI BCa CI HPD 

Bias MSE AIL CP AIL CP AIL CP 

-0.75 6 2 3 0.70351 0.14638 0.09531 0.32948 0.81 0.22546 0.87 0.18527 0.91 

  3 2 0.29649 0.10152 0.07104 0.31968 0.83 0.23584 0.85 0.20718 0.92 

  2 2 0.50000 0.09561 0.01731 0.32096 0.82 0.19574 0.86 0.11583 0.93 

 8 2 3 0.70351 0.13979 0.07330 0.31639 0.83 0.27474 0.89 0.17791 0.92 

  3 2 0.29649 0.09537 0.04839 0.31276 0.84 0.27212 0.87 0.15803 0.93 

  2 2 0.50000 0.09360 0.01441 0.31291 0.82 0.27370 0.88 0.15640 0.92 

 10 2 3 0.70351 0.12750 0.08491 0.32357 0.81 0.20150 0.89 0.13831 0.93 

  3 2 0.29649 0.09255 0.03876 0.31152 0.82 0.17182 0.86 0.12990 0.94 

  2 2 0.50000 0.08600 0.01267 0.32713 0.83 0.17000 0.88 0.13211 0.93 

-0.5 6 2 3 0.71815 0.12965 0.08756 0.31822 0.82 0.20296 0.89 0.16759 0.94 

  3 2 0.28185 0.14025 0.09298 0.32506 0.83 0.19256 0.86 0.15896 0.93 
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  2 2 0.50000 0.09776 0.10602 0.32105 0.84 0.24488 0.87 0.21645 0.94 

 8 2 3 0.71815 0.12759 0.07954 0.31008 0.81 0.22149 0.89 0.16387 0.93 

  3 2 0.28185 0.12615 0.08134 0.31704 0.82 0.21786 0.88 0.15692 0.94 

  2 2 0.50000 0.10704 0.09096 0.31886 0.83 0.21801 0.87 0.15865 0.92 

 10 2 3 0.71815 0.11998 0.05873 0.31710 0.84 0.21412 0.88 0.15625 0.94 

  3 2 0.28185 0.10321 0.08599 0.32013 0.82 0.21196 0.87 0.13886 0.92 

  2 2 0.50000 0.09409 0.03992 0.31535 0.81 0.21801 0.89 0.23921 0.92 

-0.25 6 2 3 0.73646 0.12307 0.07141 0.32505 0.82 0.22226 0.86 0.25204 0.93 

  3 2 0.26354 0.11849 0.04726 0.31084 0.82 0.21516 0.86 0.20207 0.94 

  2 2 0.50000 0.10305 0.09433 0.33308 0.83 0.25140 0.88 0.20360 0.93 

 8 2 3 0.73646 0.11645 0.05537 0.31538 0.84 0.27750 0.89 0.18913 0.94 

  3 2 0.26354 0.10635 0.04612 0.32028 0.83 0.26761 0.89 0.16674 0.92 

  2 2 0.50000 0.08736 0.07624 0.31187 0.84 0.27768 0.88 0.17065 0.93 

 10 2 3 0.73646 0.09825 0.04940 0.31546 0.83 0.26493 0.87 0.15071 0.93 

  3 2 0.26354 0.08861 0.03677 0.31096 0.84 0.26204 0.88 0.14041 0.94 

  2 2 0.50000 0.08107 0.06178 0.32212 0.86 0.27768 0.91 0.14284 0.95 

0.25 6 2 3 0.79289 0.10962 0.04223 0.32969 0.81 0.25004 0.88 0.15592 0.94 

  3 2 0.20711 0.09786 0.05202 0.31250 0.82 0.25093 0.89 0.14870 0.93 

  2 2 0.50000 0.09851 0.06973 0.32531 0.81 0.26319 0.87 0.14474 0.93 

 8 2 3 0.79289 0.09829 0.07987 0.30616 0.80 0.27428 0.86 0.16836 0.94 

  3 2 0.20711 0.07899 0.01804 0.30975 0.83 0.28907 0.88 0.15348 0.95 

  2 2 0.50000 0.08506 0.04197 0.31119 0.82 0.25629 0.87 0.15840 0.94 

 10 2 3 0.79289 0.09366 0.06232 0.32667 0.84 0.27698 0.88 0.14172 0.95 

  3 2 0.20711 0.05964 0.02225 0.32250 0.82 0.24755 0.89 0.13861 0.94 

  2 2 0.50000 0.07809 0.05033 0.31082 0.81 0.23629 0.86 0.12119 0.91 

0.5 6 2 3 0.84134 0.09165 0.05251 0.31001 0.82 0.26343 0.87 0.13156 0.92 

  3 2 0.15866 0.10792 0.06259 0.31945 0.84 0.25361 0.88 0.13166 0.91 

  2 2 0.50000 0.08771 0.05989 0.32369 0.84 0.27377 0.89 0.14454 0.94 

 8 2 3 0.84134 0.08427 0.06958 0.31121 0.81 0.26856 0.86 0.11919 0.93 
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  3 2 0.15866 0.10512 0.04869 0.30277 0.82 0.26953 0.86 0.14248 0.93 

  2 2 0.50000 0.06125 0.05334 0.31291 0.82 0.29546 0.89 0.13891 0.93 

 10 2 3 0.84134 0.08679 0.04042 0.30943 0.83 0.25444 0.88 0.13807 0.93 

  3 2 0.15866 0.09490 0.03745 0.31025 0.82 0.28743 0.86 0.14285 0.92 

  2 2 0.50000 0.05575 0.05196 0.30873 0.82 0.29546 0.87 0.12863 0.92 

0.75 6 2 3 0.92135 -0.10132 0.09761 0.31630 0.81 0.22196 0.88 0.16117 0.94 

  3 2 0.07865 0.10546 0.05130 0.30815 0.83 0.21022 0.89 0.12679 0.91 

  2 2 0.50000 0.04208 0.03013 0.28871 0.82 0.21061 0.88 0.17279 0.93 

 8 2 3 0.92135 0.10454 0.06106 0.31275 0.84 0.24982 0.89 0.14247 0.92 

 8 3 2 0.07865 0.10471 0.04898 0.31608 0.83 0.20571 0.86 0.15861 0.94 

  2 2 0.50000 -0.05195 0.02325 0.27457 0.81 0.24893 0.87 0.13900 0.91 

 10 2 3 0.92135 0.10518 0.05960 0.36063 0.83 0.23591 0.88 0.14084 0.93 

  3 2 0.07865 0.08260 0.03949 0.31352 0.84 0.22865 0.86 0.13138 0.93 

  2 2 0.50000 -0.04950 0.05769 0.26600 0.82 0.23534 0.89 0.13241 0.91 

 

Table 2: The bias and MSE for Bayes estimator for   under informative prior. 

ρ n µ1 µ2 

Prior I Prior II 

SEL LL SEL LL 

Bias MSE Bias MSE Bias MSE Bias MSE 

-0.75 6 2 3 0.12963 0.08925 0.19625 0.09230 0.12853 0.08260 0.18528 0.08258 

  3 2 -0.10245 0.01316 -0.10554 0.01517 -0.11610 0.01271 -0.11616 0.01572 

  2 2 0.09304 0.01080 0.09299 0.01786 0.09268 0.01026 0.09260 0.01024 

 8 2 3 0.11877 0.08456 0.18759 0.08951 0.10903 0.06556 0.17902 0.08549 

  3 2 -0.09169 0.01293 -0.10631 0.01394 -0.08980 0.01024 -0.11995 0.01626 

  2 2 0.07448 0.00983 0.08173 0.01980 0.07249 0.00908 0.07241 0.00686 

 10 2 3 0.10280 0.08099 0.17962 0.08083 0.10105 0.07477 0.17031 0.07464 

  3 2 -0.08953 0.01047 -0.10585 0.01478 -0.08115 0.00967 -0.11594 0.01676 

  2 2 0.06838 0.00875 0.07978 0.01056 0.06340 0.00808 0.07598 0.00800 
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-0.5 6 2 3 0.12627 0.07011 0.16265 0.08101 0.12593 0.06805 0.15931 0.06803 

  3 2 -0.11684 0.01206 -0.10172 0.01507 -0.11322 0.01174 -0.11328 0.01418 

  2 2 0.08177 0.00920 0.09173 0.01083 0.07275 0.00837 0.07272 0.00636 

 8 2 3 0.12509 0.06398 0.15088 0.07396 0.12474 0.06219 0.14737 0.06217 

  3 2 -0.10222 0.01127 -0.10232 0.01267 -0.10122 0.01041 -0.12238 0.01642 

  2 2 0.07925 0.00729 0.08916 0.01283 0.06442 0.00526 0.06436 0.00525 

 10 2 3 0.10422 0.06071 0.14209 0.06608 0.10244 0.05133 0.13444 0.06124 

  3 2 -0.09952 0.01023 -0.10000 0.01236 -0.08914 0.01007 -0.11409 0.01514 

  2 2 0.07184 0.00721 0.06160 0.01272 0.06373 0.00537 0.06347 0.00532 

-0.25 6 2 3 0.11240 0.05852 0.14027 0.07098 0.10359 0.05622 0.13589 0.05721 

  3 2 -0.10276 0.01620 -0.10281 0.01960 -0.10990 0.01357 -0.10994 0.01428 

  2 2 0.07221 0.00756 0.06219 0.01156 0.05850 0.00809 0.05848 0.00742 

 8 2 3 0.10234 0.05521 0.13382 0.08520 0.09365 0.05104 0.12249 0.05111 

  3 2 -0.09483 0.01372 -0.11158 0.01573 -0.08153 0.01290 -0.11823 0.01492 

  2 2 0.06589 0.00730 0.06581 0.01087 0.05384 0.00653 0.05380 0.00685 

 10 2 3 0.09232 0.05498 0.13206 0.05490 0.08776 0.04831 0.17690 0.04927 

  3 2 -0.08113 0.01249 -0.11359 0.01494 -0.07597 0.01185 -0.11627 0.01484 

  2 2 0.05705 0.00660 0.05684 0.00956 0.05171 0.00516 0.05151 0.00581 

0.25 6 2 3 0.10585 0.04458 0.12106 0.06814 0.09811 0.04249 0.12111 0.04490 

  3 2 -0.09327 0.01747 -0.12937 0.01948 -0.09130 0.01657 -0.13021 0.01758 

  2 2 0.04283 0.00229 0.04281 0.00900 0.03646 0.00172 0.03645 0.00182 

 8 2 3 0.09043 0.04405 0.12090 0.05421 0.08209 0.04106 0.12092 0.04405 

  3 2 -0.08796 0.01745 -0.12807 0.01748 -0.08065 0.01675 -0.13815 0.01977 

  2 2 0.03933 0.00202 0.05929 0.00802 0.03557 0.00160 0.03153 0.00190 

 10 2 3 0.08043 0.04233 0.12043 0.05298 0.07864 0.03812 0.12021 0.04117 

  3 2 -0.07189 0.01555 -0.11924 0.01562 -0.07830 0.01296 -0.13000 0.01835 

  2 2 0.03402 0.00263 0.04005 0.00610 0.03386 0.00153 0.03376 0.00182 
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0.5 6 2 3 0.08728 0.04302 0.12070 0.06302 0.08666 0.04279 0.12067 0.04793 

  3 2 -0.10503 0.02325 -0.15038 0.05326 -0.09984 0.02107 -0.15006 0.02309 

  2 2 0.04313 0.00151 0.03311 0.00850 0.02619 0.00129 0.02618 0.00188 

 8 2 3 0.08031 0.04149 0.12031 0.05149 0.08057 0.04247 0.12057 0.04546 

  3 2 -0.09443 0.02149 -0.14438 0.04152 -0.08979 0.02043 -0.15395 0.02433 

  2 2 0.03857 0.00144 0.03081 0.00643 0.02544 0.00119 0.02541 0.00915 

 10 2 3 0.07638 0.03916 0.11963 0.04915 0.19655 0.03608 0.11965 0.03906 

  3 2 -0.08751 0.01992 -0.13784 0.03936 -0.08445 0.01555 -0.14483 0.02163 

  2 2 0.03208 0.00137 0.03194 0.00534 0.02499 0.00127 0.02491 0.00160 

0.75 6 2 3 0.09142 0.04475 0.12114 0.08500 0.08929 0.04381 0.12129 0.04538 

  3 2 -0.10489 0.03205 -0.17493 0.09107 -0.09396 0.03155 -0.17944 0.03257 

  2 2 0.01679 0.00640 0.01678 0.00840 0.01570 0.00345 0.01569 0.00544 

 8 2 3 0.08173 0.04336 0.12078 0.07335 0.08291 0.04151 0.12083 0.04350 

  3 2 -0.08716 0.03198 -0.17724 0.08027 -0.08780 0.03068 -0.17804 0.03209 

  2 2 0.01515 0.00183 0.01613 0.00942 0.01421 0.00131 0.01320 0.00314 

 10 2 3 0.07078 0.03914 0.11970 0.05912 0.06987 0.03225 0.11986 0.03968 

  3 2 -0.06593 0.02612 -0.15958 0.06220 -0.17690 0.02320 -0.17714 0.03208 

  2 2 0.01314 0.00415 0.01709 0.00721 0.01290 0.00820 0.01395 0.00042 

 

Table 3: The bias and MSE for Bayes estimator for   under non-informative 

prior. 

ρ n µ1 µ2 

Non-informative 

ρ 

Non-informative 

SEL LL SEL LL 

Bias MSE Bias MSE Bias MSE   Bias    MSE 

-0.75 6 2 3 0.11282 0.08068 0.18230 0.08066 0.25 0.09183 0.04198 0.12098 0.04424 

  3 2 -0.10020 0.01165 -0.12023 0.01847  -0.08139 0.01742 -0.13816 0.01961 

  2 2 0.08136 0.00778 0.08132 0.00777  0.03218 0.00163 0.03920 0.00183 

 8 2 3 0.10276 0.05690 0.17546 0.07687  0.08050 0.03242 0.12050 0.04242 
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  3 2 -0.07913 0.01637 -0.12142 0.01738  -0.07357 0.01517 -0.13573 0.01899 

  2 2 0.07430 0.00683 0.07423 0.00818  0.03049 0.00160 0.03502 0.00161 

 10 2 3 0.08134 0.07253 0.17162 0.07875  0.07200 0.03046 0.11998 0.04044 

  3 2 -0.07129 0.00913 -0.12986 0.01921  -0.07137 0.01195 -0.13737 0.02000 

  2 2 0.06475 0.00602 0.06444 0.00795  0.02917 0.00130 0.02908 0.00129 

-0.5 6 2 3 0.12157 0.06694 0.15726 0.06785 0.5 0.07433 0.04135 0.12084 0.04354 

  3 2 -0.10698 0.01087 -0.10705 0.01288  -0.09152 0.02069 -0.15218 0.02370 

  2 2 0.07343 0.00746 0.07339 0.00846  0.02587 0.00118 0.02586 0.00088 

 8 2 3 0.11825 0.06208 0.14754 0.06892  0.07203 0.04154 0.12034 0.04153 

  3 2 -0.09512 0.01603 -0.12219 0.01911  -0.15651 0.01913 -0.15658 0.02515 

  2 2 0.06635 0.00535 0.06628 0.00812  0.02187 0.00873 0.02584 0.00970 

 10 2 3 0.10124 0.04643 0.13548 0.05637  0.19713 0.03921 0.11971 0.03920 

  3 2 -0.08170 0.00961 -0.12047 0.01617  -0.14830 0.01845 -0.14854 0.02281 

  2 2 0.06191 0.00510 0.06163 0.00704  0.02168 0.00109 0.02674 0.00113 

-0.25 6 2 3 0.10156 0.04661 0.13557 0.05608 0.75 0.08114 0.03476 0.12114 0.04476 

  3 2 -0.09205 0.01104 -0.11394 0.01405  -0.08604 0.03092 -0.18606 0.03493 

  2 2 0.05405 0.00501 0.06402 0.00608  0.01473 0.00305 0.01473 0.00404 

 8 2 3 0.09184 0.05025 0.12782 0.05251  0.06086 0.03136 0.12086 0.04363 

  3 2 -0.07952 0.01032 -0.11803 0.01534  -0.08251 0.02825 -0.18257 0.03384 

  2 2 0.05062 0.00367 0.05057 0.00465  0.01268 0.00813 0.01464 0.00909 

 10 2 3 0.08515 0.04668 0.11451 0.05067  0.05803 0.04138 0.12030 0.04136 

  3 2 -0.07194 0.01018 -0.11967 0.01622  -0.17755 0.02205 -0.17772 0.03210 

  2 2 0.04498 0.00269 0.04483 0.00367  0.01176 0.00687 0.01424 0.00886 
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