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ABSTRACT 

This paper deals with the two sample Bayesian prediction problem for 

Pareto distribution when observations are mid-type II censored. Bayesian 

predictive distribution and corresponding prediction limits are obtained for 

a general k
th
 ordered future observation. Finally performances of the 

proposed prediction limits have been studied for the smallest ordered 

future observation on the basis of Monte Carlo simulation study of 1000 

randomly generated samples.
1
  

1. Introduction 

Pareto family started getting its applicability in the context of modelling and 

predicting tools in wide variety of socio-economic and naturally occurring 

phenomenon with observations in very long right tail. Later it has been pointed 

out that the family has potential for modelling and predicting in reliability and 

life time data as well especially in the situation where product or system 

development results in an improved performance as the development proceeds. 

Hsu et. al. (2011), Ahmadi and Doostparast (2019) and Smadi et. al. (2019) 

among others have studied the Pareto distribution extensively in the context of 

analysing life testing and reliability data. 

Several forms and extensions of the Pareto distribution have been studied and a 

systematic literature is available in Arnold (2015). Among the various members 

of Pareto family, the simplest is known as classical Pareto distribution with 

probability density function (pdf). 
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with shape or inequality  parameter   and precision parameter  . 

Its cumulative distribution function is given by 

 ( |   )    (  )                     ; (  )                 (1.2) 

Bayesian analysis of above distribution was done by Upadhyay and Shastri 

(1997) for doubly type II censored observations using sample based approach. 

Notable work on the classical Pareto distribution has been made by Arnold and 

Press (1983), which includes Bayesian inferences about the inequality and 

precision parameter along with prediction about the behaviour of future 

observation.  

Prediction problems are widely used in life testing and reliability theory where 

we infer the value of unknown future variable using current available 

information. The prediction of future ordered observation(s) shows how long a 

sample of units might run until all fail in life testing. For making inferences about 

future sample characteristics, its predictive density is determined by combining 

the posterior distribution with the pdf of future characteristics given parameter(s). 

Integration with respect to each of parameter of this combination yields the 

predictive distribution for the future characteristics which summarizes the 

knowledge about future sample in the light of information provided by the data in 

hand (see, Aitchen and Dunsmore (1975)).  

Bayes prediction in Pareto distribution was studied by Soliman (2000) when 

sample size is random variable. Prediction interval for Pareto distribution was 

obtained by Ali Mousa (2003) for doubly type II censored data. Raqab et. al. 

(2010) studied predictive inference for Pareto distribution for progressively type-

II censored sample. El-Din et. al (2017) drew Bayesian inference and prediction 

for Pareto distribution based on ordered ranked set sampling. Shafay et. al. 

(2017) considered the problem of Bayesian prediction of order statistics when 

sample size is both fixed and random for Pareto distribution. For Pareto 

distribution several authors have focused on the Bayesian prediction problem of 

future observations based on various types of censoring,  but there appears to be 

nothing in the literature of prediction of Pareto observables for mid type II 

censoring scheme which is reverse of doubly type II censoring scheme. 

A mid censored data could be advocated in distribution where early failures or 

late failures are more significant. In this situation inferences based on left 
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censored or right censored observations could not give clear picture. Mid 

censoring arises when an experimenter while recording some data, find hurdles in 

observing some middle observations due to some unforeseen event and thereafter 

he records remaining data. Let            be n items put on test, experimenter 

records first r observations           Due to some unforeseen event he is 

not able to record some l middle observations, namely             and 

then he records the last (n-r-l) observations            . Shastri et. al. 

(2020) obtained Bayes predictive inference for inverse Weibull distribution for 

mid type II censored observations. This censoring scheme, as a special case of 

multiply type II censoring, was discussed by Upadhyay et. al. (1996), Shastri and 

Pamari (2014) among others.  

In next section, Bayes predictive density and prediction limits are derived for a 

general k
th
 ordered future observation from a Pareto distribution under mid type 

II censoring scheme. Three different cases on parameters are considered, namely 

case (i) when parameter   is known, case (ii) when parameter   is known and 

case (iii) when both the parameters   and   are unknown. In section 3, prediction 

limits for the smallest future observation are obtained for all three cases. Results 

are tabulated and discussed in section 4 and concluded in the last section. 

2. Prediction limits 

Let us assume that            be  an informative sample of size n drawn from a 

Pareto distribution given in (1.1). Consider the mid type II censoring scheme as 

described in previous section and let         and             be the 

observed life times where l middle observations are censored.  

The likelihood function (LF) for this situation can be written as 
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where 

                                 (  )
 (
 

 
) 

Case I :   When parameter   is known 

Consider a Pareto prior for the parameter  , when other parameter   is known 

   ( |     )     (   )
 (    )                                      (2.3) 

Combining LF (2.2) with prior (2.3) via Bayes theorem, the posterior distribution 

is defined and obtained as  

  ( |   )  
 (     )  ( )

∫  (     )  ( )  
 

  ( |   )  (     )  
 (     )  (       )                          (2.4) 

Let            be the second independent random sample of size m of future 

observations from the model (1.1), then the density of a general k
th
 ordered future 

observation, where       will be obtained by  

 ( ( )|   )  
  

(   ) (   ) 
[ ( ( ))]

   
 ( ( ))[   ( ( ))]

   
  

Substituting from (1.1), (1.2) and solving  
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Then the Bayes predictive density for future k
th
 ordered observation will be  

                           ( ( )| )  ∫ ( ( )|   )  ( |   )    
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On substituting the values 

 ( ( )| )   
  (   )  (     )∑  
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 (2.6) 

In the context of Bayes prediction, we say here that (       ) is a    (   )  

limit for k
th
 ordered future observation, if  

  [     ( )     ]      

Here     and     are said to be lower and upper Bayes prediction limits for k
th

 

ordered future observation  ( ). One-sided Bayes prediction limits are obtained 

by solving  
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Above can be rewritten as  
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and  
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Using (2.6), (2.7) and (2.8), the one sided Bayes prediction limits are obtained by 

solving 
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Case II : When parameter  is known 

Consider a gamma prior for the parameter   , when other parameter   is known 

as suggested by Arnold and Press (1989) 
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Combining LF (2.5) with prior (2.11) via Bayes theorem, the posterior 

distribution is defined and obtained as  

  ( |   )  
 (     )  ( )

∫  (     )  ( )  
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where 

       (   )                 ∑     
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Then the Bayes predictive density for the k
th
 ordered future observation will be  

                           ( ( )| )  ∫ ( ( )|   )  ( |   )    

where  ( ( )|   )  is pdf of k
th
 ordered future observation as discussed in case I. 

On substituting the values from (2.5) and (2.12), and on simplification we get 
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Using (2.7) and (2.8), the one sided Bayes prediction limits are obtained by 

solving 
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Case III : When both parameters   and   are unknown 

As suggested by Arnold and Press (1989), we consider a gamma prior for the 

parameter   and Pareto prior for parameter   given   

  ( ) 
  
  

   
                                                   (2.16) 
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 (     )               ,                   (2.17) 

Combining LF (4) with priors (2.16), (2.17) via Bayes theorem, the posterior 

distribution is defined and obtained as  
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If  ( ( )|   ) is the pdf of k
th
 ordered future observation as discussed in case I, 

then the Bayes predictive density for k
th
 ordered future observation will be  

                           ( ( )| )  ∫∫ ( ( )|   )  (   | )      

On substituting the values from (2.5) and (2.18), and on simplification we get 
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Using (2.7) and (2.8), the one sided Bayes prediction bound limits are obtained 

by solving 
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3. Prediction limits for the future order smallest observation 

Prediction limits for the smallest observation can be obtained by substituting k=1 

in all three cases on parameters discussed in previous section. 

Case I : When parameter   is known 

Prediction limits obtained from (2.9) and (2.10) reduces to 

      [(  
 
 ⁄ )
* (   )    +

(     )
]
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                                                 (   ) 
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    ⁄
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which are in nice closed form. 

Case II: When parameter   is known 

Prediction limits obtained from (2.14) and (2.15) reduces to 
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It can be seen that the above equations cannot be solved explicitly for     and 

   , one needs iterative method to solve them.  

Case III: When both parameters         are unknown 

Prediction limits obtained from (2.20) and (2.21) reduces to  

(    ) ∑     *(           (   )     +
 (      ) 

   

(      )∑   
 
   (         )

 (      )
     ⁄              (   ) 

and  

(    ) ∑     *(           (   )     +
 (      ) 

   

(      )∑   
 
   (         )

 (      )
   ⁄         (   ) 

Since above equation are not in explicit form therefore bisection method is used 

for finding the prediction limits     and     . 

4. Discussion 

The present section computes proposed Bayes prediction intervals for the 

smallest ordered future observation on the basis of Monte Carlo simulation 

technique of 1000 randomly generated samples from Pareto distribution by 

taking parameters =1 and   =0.5. Two different sample sizes namely 6 and 20 

were considered for both informative and future samples i.e. n=m=6 and 

n=m=20. During computation we have considered two levels of  namely 5% 

and 1%, while on reporting we found similar behaviour of proposed prediction 

limits.  Therefore due to paucity of space we have reported 95% coverage 

probability of prediction intervals for all the three cases.  

Case I:  When parameter   is known 

Bayes prediction limits are computed for two different values of parameter   

(=0.5, 2.0) and Bayes prediction intervals are tabulated in the tables 1 and 2. 

Number of values, namely 0.5, 1.0, 2.0, 3.0 are assigned to the hyperparameter a0 

and 0.5(0.5)3.0 to the hyperparameter b0. In this case prediction intervals are 

independent to censoring fraction so no variation in censoring fraction is 

reported. From both the tables, it may be noted that prediction intervals increase 

with the increase in hyperparameters a0 and b0. It is obvious that as value of 

parameter   increases prediction intervals also increases. Prediction interval 

decreases with the increase in sample size. 
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Case II:  When parameter  is known 

In this case parameter  is known and kept fixed at 0.5, 1.0, 2.0, 4.0. Three 

different values 2.0, 3.0, 4.0 are assigned to hyperparameter c0 and four different 

values 0.5, 1.0, 2.0, 3.0 are assigned to the hyperparameter d0. Different 

censoring fractions are also considered for the study. For n=m=6, 33% and 66% 

observations are censored and hence resulted in l=2 and 4. Where as in case of 

n=m=20, values of l has been taken as 4, 8, 12, 16 so as 20%, 40%, 60%, 80% 

observations are censored. For the case results are reported in tables 3 and 4. It is 

evident from the results that the prediction intervals increase with the increase in 

hyperparameter do but reverse is the case with the effect of hyperparameter c0. As 

c0 increases, prediction intervals decrease. It may be deduced that with the 

increase in parameter , prediction intervals decrease. Similar is the case with the 

parameter  , prediction intervals decrease with the increase in the value of  . As 

far as censoring fraction is concerned, as we increase number of censored 

observations, results are found to be better i.e. if l increases prediction intervals 

decrease. Same trend may be noted when size of samples is 20, with shorter 

prediction intervals everywhere. Moreover large sample size and large numbers 

of censored observations, provide the shortest width of prediction intervals. 

Case III  :  When parameter   and    both are unknown 

Tables 5 to 8 report prediction intervals for the case when  and   both are 

unknown. As it may be deduced from tables 1 and 2, prediction interval is shorter 

for a0=0.5, so by keeping value of hyperparameter a0 fixed at 0.5 and considering 

b0=1.0, effect of other hyperparameters and parameters on prediction interval is 

studied and reported in tables 5 and 6. 

For the purpose three different values namely 2.0, 3.0, 4.0 are assigned to the 

hyperparameter c0 and four different values 0.5, 1.0, 2.0, 3.0 to hyperparameter 

d0.. Effect of censored observations is also studied by taking 33% and 66% of 

observations censored at n=m=6 and 20%, 40%, 60% and 80% of observations 

censored when n=m=20 which yields l=2, 4 and l=4, 8, 12 respectively. 

For small sample sizes i.e. n=m=6, prediction intervals increase everywhere with 

the increase in the value of hyperparameter d0. As far as effect of hyperparameter 

c0 is concerned, for smaller choices of  , prediction intervals decrease with the 

increase in c0. As we increase  , prediction intervals decrease everywhere with 

smaller values of  i.e. <=2. For >2, with the increase in c0, prediction intervals 

first decrease then increase. In this range, it can be minimized with the proper 
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choices of hyperparameters c0 and d0. As far as the effect of parameter  is 

concerned, prediction intervals decrease as  increases. In case as we increase 

number of censored observations, prediction intervals increase for  2 and then 

decreases for >2. It has been studied and reported that as we increase sample 

sizes i.e. (informative and future) n=m=20, prediction intervals decrease 

everywhere. It may be further shorten by increasing the value of parameter   . 

Similarly, it is obvious from the results of previous case that prediction intervals 

found to be shorter with minimum value of hyperparameter d0 and maximum 

value of hyperparameter c0. So keeping c0 fixed at 4.0 and d0 at 0.5 effect of other 

hyperparameters have studied and reported in tables 7 and 8. Four different 

values are assigned to the hyperparameter b0 namely 0.5, 1.0, 2.0, 3.0 and three 

different values 2.0, 3.0 and 4.0 are assigned to the hyperparameter a0. Results 

are studied and reported for   =0.5, 2.0 and =0.5, 1.0, 2.0, 4.0. Effect of 

censored observations has also been studied by increasing the number of 

censored observations. 

It can be deducted from the table 7 that for n=m=6 and for   =0.5 prediction 

intervals increase with the increase in the value of hyperparameter b0. While 

trend is reverse in the majority of the cases with the hyperparameter a0. With less 

number of observations censored i.e. for l=2 and b0<=1, prediction intervals 

decrease with increase in a0. For b0>1, prediction intervals can be minimized with 

the proper selection of hyperparameters a0, b0 and parameters  and  . With the 

increase in the value of , prediction intervals decrease for majority of cases 

except for l=4, =4 and b0=2. As we increase number of censored observations 

prediction intervals first decrease for <=1 and c>1 then it increase. If size of 

informative and future samples increase, prediction intervals decrease 

everywhere i.e. for n=m=20, it is found and reported shorter. It can further be 

minimized at larger number of observation censored. 

5. Conclusion 

Under the mid censoring, prediction interval for future observation is obtained in 

nice closed form in the case when inequality parameter is known. For other two 

cases i.e. when precision parameter is known and when both the parameters are 

unknown, even though Bayes prediction limits cannot be obtained in explicit 

form, it can be computed using iterative methods. From the computation and 

discussion, it is clear that proposed limits perform better almost everywhere, 

especially for small values of hyperparameters except c0. However for other 

values of hyperparameters, one can still consider proposed limits with proper 
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choice of parameters. For mid censoring with large number of observations are 

censored in middle, prediction interval is found to be shortest.  When size of both 

informative and future sample is large proposed prediction intervals are shorter 

everywhere. A similar study can be performed for any other future 

observation/characteristic of interest which will be useful to the situation where 

such type of life test is needed. 
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Table 1 : Prediction intervals when parameter   is known for  m=n=6 and    =1. 

b0 
  =0.5   =2.0 

a0=0.5 a0=1.0 a0=2.0 a0=3.0 a0=0.5 a0=1.0 a0=2.0 a0=3.0 

0.5 0.16990 0.17074 0.17252 0.17295 0.96310 0.96950 0.98090 0.99120 

1.0 0.33979 0.34148 0.34404 0.34504 1.92690 1.93910 1.96180 1.98240 

1.5 0.50969 0.51222 0.51606 0.51755 2.89030 2.90870 2.94270 2.97361 

2.0 0.67959 0.68296 0.68808 0.69179 3.85380 3.87830 3.92370 3.96481 

2.5 0.84948 0.85370 0.86259 0.86474 4.81730 4.84794 4.90465 4.95601 

3.0 1.01938 1.02444 1.03212 1.03768 5.78077 5.81753 5.88558 5.94721 

 

Table 2 : Prediction intervals when parameter   is known for  m=n=20 and   =1. 

b0 
  =0.5   =2.0 

a0=0.5 a0=1.0 a0=2.0 a0=3.0 a0=0.5 a0=1.0 a0=2.0 a0=3.0 

0.5 0.04719 0.04722 0.04727 0.04731 0.20707 0.20720 0.20744 0.20768 

1.0 0.09438 0.09444 0.09453 0.09462 0.41414 0.41439 0.41488 0.41536 

1.5 0.14157 0.14165 0.14180 0.14192 0.62121 0.62159 0.62232 0.62304 
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2.0 0.18877 0.18887 0.18906 0.18923 0.82828 0.82879 0.82977 0.83071 

2.5 0.23596 0.23609 0.23633 0.23654 1.03535 1.03598 1.03721 1.03839 

3.0 0.28315 0.28331 0.28360 0.28385 1.24242 1.24318 1.24465 1.24607 

 

Table 3 : Prediction intervals when parameter   is known for  m=n=6. 

l   c0 
    =0.5     =2.0 

d0=0.5 d0=1.0 d0=2.0 d0=3.0 d0=0.5 d0=1.0 d0=2.0 d0=3.0 

2 

0.5 

2.0 5.66303 6.43009 6.63947 7.82495 0.83529 0.97120 1.29380 1.61053 

3.0 4.38005 4.61511 5.19989 5.81399 0.70589 0.80454 1.06533 1.34397 

4.0 3.37272 3.73158 4.11115 4.62659 0.60952 0.69358 0.90573 1.12939 

1.0 

2.0 2.72667 3.14047 3.58390 3.90281 0.41342 0.47968 0.62341 0.80753 

3.0 2.23518 2.25965 2.63084 2.75828 0.34756 0.40542 0.53336 0.67616 

4.0 1.73492 1.77359 1.79430 2.24217 0.30235 0.34752 0.46385 0.57243 

2.0 

2.0 1.44070 1.54508 1.73939 1.96591 0.20188 0.24519 0.32482 0.40599 

3.0 1.07733 1.14132 1.34698 1.49042 0.17563 0.20828 0.26657 0.33625 

4.0 0.85683 0.88623 1.00009 1.09158 0.15223 0.17382 0.22869 0.28375 

4.0 

2.0 0.69012 0.78171 0.84583 1.02633 0.10537 0.12333 0.16094 0.20600 

3.0 0.56427 0.57586 0.66718 0.73279 0.08634 0.10288 0.13322 0.16676 

4.0 0.42310 0.46473 0.50415 0.56691 0.07801 0.08690 0.11358 0.14010 

4 

0.5 

2.0 4.53206 4.62070 6.19499 8.16095 0.86312 0.97076 1.32416 1.72214 

3.0 4.40764 4.27823 5.05713 6.34378 0.67476 0.80555 1.04288 1.61831 

4.0 2.85346 3.67336 3.29189 4.72130 0.57097 0.69599 0.98533 1.31029 

1.0 

2.0 2.59581 2.50160 3.07945 4.43347 0.45132 0.52388 0.70029 0.87752 

3.0 1.74106 2.04434 2.20787 2.90352 0.43074 0.42200 0.56363 0.71445 

4.0 1.54268 1.43221 2.19217 2.32049 0.25209 0.35357 0.47338 0.60547 

2.0 

2.0 1.61396 1.46542 2.40068 2.32416 0.21460 0.26276 0.34841 0.44213 

3.0 1.15978 1.30764 1.54580 1.58656 0.17358 0.21099 0.27902 0.36232 

4.0 0.69657 0.86281 1.02332 1.15333 0.14301 0.17458 0.23641 0.30094 

4.0 

2.0 0.70576 0.62206 0.95193 1.07388 0.10926 0.13203 0.17391 0.27896 

3.0 0.40886 0.54915 0.59253 0.79721 0.08866 0.10500 0.13835 0.21974 

4.0 0.38741 0.44179 0.46491 0.51306 0.07174 0.08712 0.11611 0.18664 
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Table 4 : Prediction intervals when parameter   is known for  m=n=20. 

l   c0 
  =0.5   =2.0 

d0=0.5 d0=1.0 d0=2.0 d0=0.5 d0=1.0 d0=2.0 

4 

1.0 

2.0 0.451196 0.453198 0.474154 0.099664 0.10421 0.115369 

3.0 0.423244 0.429316 0.446797 0.094586 0.099705 0.109419 

4.0 0.401248 0.408118 0.42409 0.090405 0.096374 0.104443 

2.0 

2.0 0.224298 0.228444 0.238965 0.05031 0.05326 0.056897 

3.0 0.212954 0.21714 0.221512 0.047017 0.049927 0.055018 

4.0 0.201088 0.204603 0.208688 0.045507 0.047701 0.0522 

4.0 

2.0 0.112364 0.112553 0.119609 0.024579 0.026251 0.029005 

3.0 0.105874 0.107927 0.111554 0.024101 0.024974 0.027345 

4.0 0.100726 0.101568 0.105022 0.022758 0.023533 0.026328 

8 

1.0 

2.0 0.445294 0.45638 0.465305 0.100021 0.10491 0.117171 

3.0 0.429159 0.432017 0.435532 0.09443 0.099583 0.109127 

4.0 0.402052 0.405125 0.419655 0.091487 0.093909 0.104506 

2.0 

2.0 0.227388 0.227039 0.237566 0.050665 0.052184 0.05834 

3.0 0.214047 0.215791 0.223301 0.047624 0.050203 0.05509 

4.0 0.200976 0.203682 0.209185 0.045559 0.047058 0.052478 

4.0 

2.0 0.112495 0.114568 0.116942 0.025046 0.02626 0.02876 

3.0 0.106734 0.107871 0.112903 0.023661 0.024902 0.02759 

4.0 0.100618 0.101535 0.10201 0.022566 0.023741 0.026115 

12 

1.0 

2.0 0.45443 0.466234 0.474122 0.100718 0.106292 0.117014 

3.0 0.420134 0.430005 0.446309 0.096126 0.099996 0.111539 

4.0 0.404082 0.406177 0.416849 0.089833 0.094846 0.104226 

2.0 

2.0 0.224756 0.232225 0.235167 0.050414 0.053371 0.058483 

3.0 0.212241 0.215365 0.221023 0.047134 0.049749 0.05508 

4.0 0.200566 0.202317 0.207435 0.045453 0.046743 0.052319 

4.0 

2.0 0.111415 0.115047 0.117129 0.025217 0.026296 0.029139 

3.0 0.104605 0.107334 0.111855 0.023829 0.024922 0.02786 

4.0 0.099434 0.101381 0.10356 0.022585 0.023686 0.026418 

16 

1.0 

2.0 0.45355 0.460161 0.476216 0.100637 0.108551 0.120915 

3.0 0.424737 0.425809 0.444282 0.094885 0.101282 0.111579 

4.0 0.389229 0.397408 0.412419 0.08922 0.095096 0.106168 

2.0 

2.0 0.222924 0.228039 0.24014 0.04995 0.054207 0.060668 

3.0 0.206473 0.213065 0.220481 0.047421 0.050551 0.056485 

4.0 0.196482 0.195984 0.207882 0.044992 0.048189 0.053585 

4 

2.0 0.113646 0.114541 0.118267 0.02524 0.027119 0.030037 

3.0 0.106134 0.107232 0.109192 0.023883 0.025154 0.028129 

4.0 0.096297 0.09835 0.101961 0.022276 0.02403 0.026673 
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Table 5 : Prediction intervals in case when    and   are unknown  for  m=n=6 

when  hyperparameters are fixed at a0=0.5, b0=1. 

l   c0 
  =0.5   =2.0 

d0=0.5 d0=1.0 d0=2.0 d0=3.0 d0=0.5 d0=1.0 d0=2.0 d0=3.0 

2 

0.5 

2.0 6.95391 7.23282 8.31669 10.5588 1.42823 1.57483 1.90505 2.27777 

3.0 4.28715 4.54354 5.10018 6.90627 1.12745 1.23117 1.46966 1.74699 

4.0 3.10286 3.12596 3.48365 5.35045 0.93160 1.01734 1.20103 1.40970 

1.0 

2.0 3.72554 4.09322 4.77209 6.16856 0.48456 0.57254 0.77445 0.99549 

3.0 2.60764 2.84564 3.05976 4.28751 0.40119 0.47361 0.61968 0.79019 

4.0 1.87416 2.04744 2.31245 3.06325 0.33849 0.39362 0.52170 0.66501 

2.0 

2.0 2.13783 2.24409 2.79970 3.41258 0.20767 0.14402 0.13158 0.22580 

3.0 1.54376 1.60085 1.91373 2.55734 0.03119 0.03809 0.09534 0.19289 

4.0 1.17426 1.14839 1.33348 1.81913 0.15610 0.09333 0.08741 0.16315 

4.0 

2.0 1.08235 1.14238 1.33601 1.66818 4.02542 3.09332 1.62442 0.81804 

3.0 0.82714 0.73057 0.99202 1.11649 0.00056 0.00291 0.00382 0.01326 

4.0 0.61719 0.66003 0.76396 0.89479 2.95076 2.13356 1.08730 0.57603 

4 

0.5 

2.0 9.40787 9.56240 11.1654 14.0259 1.57160 1.75174 2.13330 2.58013 

3.0 5.67120 5.75143 5.76514 8.62259 1.22045 1.35046 1.63402 1.91534 

4.0 3.37940 3.48355 4.06119 5.46208 0.98370 1.09317 1.29994 1.52801 

1.0 

2.0 4.56065 5.21781 5.76076 7.92455 0.51485 0.62453 0.85733 1.11481 

3.0 2.97922 3.22213 3.56845 4.36560 0.40215 0.48935 0.68163 0.87209 

4.0 2.08593 2.07668 2.38031 3.40277 0.32658 0.41216 0.55388 0.69991 

2.0 

2.0 2.31314 2.78697 3.09971 3.51486 0.18115 0.13013 0.09403 0.16838 

3.0 1.62198 1.83350 2.09129 2.34375 0.06321 0.09275 0.05194 0.12734 

4.0 1.01485 1.12792 1.28405 1.51306 0.11780 0.09644 0.06142 0.09835 

4.0 

2.0 0.92293 0.81173 0.84106 1.18094 2.88684 2.17589 1.04636 0.56508 

3.0 0.58330 0.49090 0.55294 0.73923 0.16607 0.21540 0.10080 0.18657 

4.0 0.42121 0.35369 0.48485 0.59185 1.97158 1.46553 0.75271 0.42230 
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Table 6 : Prediction intervals in case when    and   are unknown  for  m=n=20 

when  hyperparameters are fixed at a0=0.5, b0=1. 

l   c0 
  =0.5   =2.0 

d0=0.5 d0=10 d0=2.0 d0=0.5 d0=1.0 d0=2.0 

4 

1.0 

2.0 0.52694 0.50525 0.52389 0.10377 0.11191 0.12040 

3.0 0.46947 0.47516 0.48977 0.09954 0.10448 0.11579 

4.0 0.44454 0.44974 0.45716 0.09574 0.09943 0.10917 

2.0 

2.0 0.30352 0.31415 0.32134 0.05135 0.04522 0.03328 

3.0 0.29190 0.29101 0.30040 0.00080 0.00118 0.00236 

4.0 0.27365 0.27077 0.28378 0.04702 0.04403 0.02857 

4.0 

2.0 0.14528 0.14315 0.15574 1.07013 0.98489 0.83630 

3.0 0.13017 0.13571 0.14441 0.00182 0.00053 0.00146 

4.0 0.12496 0.12890 0.13480 0.96338 0.86641 0.74824 

8 

1.0 

2.0 0.49490 0.50402 0.52891 0.10481 0.11051 0.12137 

3.0 0.46352 0.47795 0.49338 0.10041 0.10536 0.11607 

4.0 0.44204 0.44918 0.46581 0.09534 0.09998 0.11047 

2.0 

2.0 0.29706 0.30993 0.31904 0.05206 0.04457 0.03313 

3.0 0.27759 0.27881 0.30488 0.00442 0.00270 0.00109 

4.0 0.26403 0.27170 0.28682 0.05205 0.03513 0.02823 

4.0 

2.0 0.12688 0.12965 0.14169 1.05190 0.95048 0.79949 

3.0 0.11367 0.12417 0.13362 0.00664 0.00446 0.00211 

4.0 0.11199 0.11301 0.13062 0.93174 0.84313 0.73739 

12 

1.0 

2.0 0.50546 0.50973 0.52964 0.10532 0.11116 0.12303 

3.0 0.46525 0.47239 0.49140 0.10025 0.10592 0.11522 

4.0 0.42933 0.44900 0.46565 0.09451 0.09997 0.11053 

2.0 

2.0 0.28701 0.29595 0.30241 0.05091 0.04179 0.03423 

3.0 0.26303 0.27801 0.28610 0.01744 0.02056 0.01480 

4.0 0.25122 0.25806 0.26728 0.03826 0.03845 0.02528 

4.0 

2.0 0.09465 0.10066 0.10520 0.96560 0.86766 0.74833 

3.0 0.08614 0.09150 0.10262 0.02275 0.02156 0.01012 

4.0 0.07437 0.08505 0.09129 0.85060 0.77955 0.66969 

16 

1.0 

2.0 0.50948 0.51743 0.54193 0.10775 0.11341 0.12772 

3.0 0.46892 0.47046 0.49465 0.10029 0.10550 0.11913 

4.0 0.43808 0.44150 0.45817 0.09427 0.09941 0.11349 

2.0 

2.0 0.20475 0.21118 0.23090 0.07323 0.08352 0.05690 

3.0 0.18088 0.18808 0.21067 0.07284 0.05975 0.05367 

4.0 0.15575 0.16097 0.18674 0.06505 0.06537 0.04252 

4.0 

2.0 0.13261 0.11379 0.10837 0.71716 0.78154 0.48872 

3.0 0.11899 0.11703 0.09211 0.02241 0.00777 0.08663 

4.0 0.09708 0.08942 0.08761 0.66133 0.61651 0.43978 
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Table 7 : Prediction intervals in case when    and   are unknown  for  m=n=6 

when  hyperparameters are fixed at c0=4.0, d0=0.5. 

l   a0 
  =0.5   =2.0 

b0=0.5 b0=1.0 b0=2.0 b0=3.0 b0=0.5 b0=1.0 b0=2.0 b0=3.0 

2 

0.5 

2.0 2.89923 3.67808 4.56569 4.54574 0.86989 0.90243 0.66485 0.29367 

3.0 2.85579 3.63365 4.06994 4.40978 0.85753 0.89541 0.66677 0.31116 

4.0 2.70825 3.47267 4.21462 4.41737 0.83630 0.88249 0.66737 0.30594 

1.0 

2.0 1.76666 2.23910 2.42854 2.43962 0.45241 0.33697 0.30809 2.94867 

3.0 1.77028 2.19781 2.55068 2.35374 0.44307 0.33008 0.29456 2.89736 

4.0 1.71682 2.10410 2.39688 2.05740 0.44042 0.32873 0.31173 2.84030 

2.0 

2.0 1.08842 1.18242 1.22549 2.10063 0.17004 0.15594 5.59664 
32.2652

0 

3.0 1.07617 1.09714 1.16706 2.17885 0.16163 0.15206 5.50171 30.9033 

4.0 1.04078 1.12065 1.22529 2.18518 0.16219 0.15415 5.53248 29.8935 

4.0 

2.0 0.59330 0.61632 2.37780 11.6053 0.07365 2.78058 51.8639 239.409 

3.0 0.57636 0.60494 2.56295 11.7049 0.07628 2.75093 50.0863 237.652 

4.0 0.57230 0.59932 2.71474 13.1023 0.07895 2.72058 48.3788 235.002 

4 

0.5 

2.0 3.15878 3.93152 3.95519 3.70790 0.93643 0.97216 0.65047 0.17820 

3.0 3.16161 3.71684 4.10240 3.56338 0.92564 0.96248 0.65483 0.18298 

4.0 2.97815 3.64155 3.64102 3.50379 0.92036 0.94810 0.64955 0.17476 

1.0 

2.0 1.88752 1.98395 1.61382 1.27626 0.49038 0.32031 0.29494 2.33874 

3.0 1.92816 1.93296 1.66081 1.31953 0.47910 0.31686 0.28352 2.16819 

4.0 1.84333 2.05281 1.51384 1.39888 0.47372 0.32363 0.28015 2.27032 

2.0 

2.0 0.99000 0.86457 0.77980 1.55826 0.16383 0.15216 3.87679 21.8476 

3.0 0.96594 0.83242 0.82123 1.50368 0.16044 0.14519 3.55415 21.0422 

4.0 0.98708 0.70654 0.74195 1.65006 0.16005 0.18348 4.07462 23.1010 

4.0 

2.0 0.41313 0.38909 2.12880 7.66565 0.07275 1.99216 36.4821 178.391 

3.0 0.40469 0.34711 1.95703 8.08074 0.08594 1.83492 35.4190 179.387 

4.0 0.40414 0.34756 2.07894 7.42498 0.08690 2.22407 35.7629 167.478 
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Table 8 : Prediction intervals in case when    and   are unknown  for  m=n=20 

when  hyperparameters are fixed at c0=4.0, d0=0.5. 

l   a0 
  =0.5   =2.0 

b0=0.5 b0=1.0 b0=2.0 b0=0.5 b0=1.0 b0=2.0 

4 

1.0 

2.0 0.32119 0.43494 0.53778 0.11873 0.09407 0.10027 

3.0 0.32017 0.43810 0.54210 0.11851 0.09367 0.09988 

4.0 0.31677 0.43570 0.54206 0.11905 0.09493 0.10490 

2.0 

2.0 0.22345 0.26653 0.23852 0.04748 0.05125 1.87926 

3.0 0.21760 0.27064 0.24356 0.04776 0.05066 1.92943 

4.0 0.21751 0.26814 0.24720 0.04734 0.05034 1.92786 

4.0 

2.0 0.13495 0.12478 0.30862 0.02335 0.97099 14.66358 

3.0 0.13631 0.12497 0.29593 0.02464 0.94535 14.54831 

4.0 0.13328 0.12277 0.30150 0.02654 0.93695 15.02869 

8 

1.0 

2.0 0.32073 0.42925 0.53076 0.12007 0.09574 0.09921 

3.0 0.31871 0.44007 0.53596 0.11930 0.09520 0.10138 

4.0 0.31966 0.43291 0.52470 0.11905 0.09484 0.10071 

2.0 

2.0 0.21829 0.26363 0.23248 0.04766 0.05476 1.88354 

3.0 0.22037 0.26869 0.22676 0.04668 0.05267 1.86468 

4.0 0.22080 0.26621 0.21828 0.04746 0.05460 1.86430 

4.0 

2.0 0.13174 0.11414 0.28343 0.03041 0.92715 14.42667 

3.0 0.13005 0.11243 0.24576 0.02512 0.92574 14.43300 

4.0 0.12972 0.11051 0.27357 0.02164 0.93458 14.30841 

12 

1.0 

2.0 0.32579 0.44422 0.49581 0.11972 0.09401 0.11915 

3.0 0.32672 0.43941 0.50235 0.12048 0.09322 0.14279 

4.0 0.32564 0.43153 0.49150 0.11963 0.09346 0.13302 

2.0 

2.0 0.22019 0.25027 0.16479 0.04746 0.05986 1.64937 

3.0 0.21929 0.25046 0.15221 0.04722 0.07770 1.70250 

4.0 0.21435 0.25420 0.16180 0.04751 0.05565 1.71430 

4.0 

2.0 0.12488 0.08247 0.19056 0.03452 0.81954 13.42364 

3.0 0.12556 0.08555 0.26569 0.03817 0.82815 13.74385 

4.0 0.12272 0.08331 0.32852 0.02706 0.83784 13.51744 

16 

1.0 

2.0 0.33771 0.43528 0.30544 0.12805 0.09338 0.10183 

3.0 0.34035 0.43466 0.30460 0.12724 0.09235 0.11441 

4.0 0.33509 0.43128 0.31314 0.12679 0.09369 0.12327 

2.0 

2.0 0.21121 0.16015 0.20468 0.04624 0.03383 1.14430 

3.0 0.21515 0.15189 0.15949 0.04729 0.05318 1.57977 

4.0 0.21203 0.15384 0.18171 0.04662 0.04590 2.19337 

4.0 

2.0 0.07692 0.09852 0.47418 0.02876 0.57736 10.88102 

3.0 0.07672 0.08459 0.58430 0.02633 0.88034 10.88151 

4.0 0.07696 0.07358 0.49681 0.02704 0.92697 11.93747 
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