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ABSTRACT 

 

Neighbor designs are useful to neutralize the neighbor effects. These 

designs are available in literature for several configurations especially for 

circular blocks of sizes 3, 4, ... , 10. In this paper, first order neighbor 

balanced designs are constructed for circular binary blocks of size 11, 12, 

13 and 14. 

1. Introduction 

 

A design (v, k, λ′) in which each pair of distinct adjacent treatments appears λ′ 

times as neighbors is called nearest-neighbor balanced design (NNBD), where v 

is number of treatments, k is block size and λ′ is number of times each pair of 

distinct treatments appears as neighbors. These designs are useful for the cases 

where the performance of a treatment is affected by the treatments applied to its 

neighboring plots. Neighbor designs were initially used by Rees (1967) in 

serology. He presented a technique used in virus research and constructed 

neighbor designs for odd v with λ′ = 1. Lawless (1971), Hwang (1973), Misra et 

al. (1991), Azais et al. (1993), Ahmed and Akhtar (2008, 2009, 2012, 2015), 

Akhtar and Ahmed (2009), Shehzad et al. (2011) constructed neighbor designs 

for several cases. For some more references see, Ahmed et al. (2011). Ahmed et 

al. (2009), Ahmed et al. (2010), Akhtar et al. (2010), Ahmed and Akhtar (2011), 

Ahmed et al. (2011), Yasmin et al. (2013) and Ahmed and Akhtar (2013) 
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presented the construction of individual block size 9, 8, 5, 6, 10, 4 and 7, 

respectively. Following are some important definitions. 

Neighbor Effect: If the response on a given plot is affected by the treatments on 

neighboring plots as well as by the treatment applied to that plot then there is 

neighbor effect. According to Azais et al. (1993) experiments in agriculture, 

horticulture, and forestry often show neighbor effects. 

Neighbor Balanced Designs: A design in which each pair of non-identical 

treatments appears same number of times, say λ′ in adjacent plots of the same 

block is called neighbor balanced design of first order or nearest-neighbor 

balanced design. 

Minimal NNBD: If λ′ = 1, then nearest-neighbor balanced design is called 

minimal and is considered to be economical. 

Binary Blocks: Blocks in which each treatment appears at most once are called 

binary blocks.  

Binary Design: A design in which all blocks are binary is called a binary design.  

Circular Block: A block formed in a cycle and the treatments allocated to its 

first and last plots are considered as neighbors is called circular block. 

Circular Design: A design with all its blocks circular is called a circular design. 

Bailey and Druilhet (2004) showed that a circular neighbor balanced design 

(where no treatment is nearest neighbor to itself) is universally optimal for total 

(direct and neighbor) effects under the linear models containing the nearest 

neighbor effects. Filipiak and Rozanski (2005) showed that circular neighbor 

balanced designs are universally optimal. In this article, NNBD/ first order 

neighbor balanced designs are constructed for    k = 11, 12, 13 and 14 which will 

be a positive addition to the present literature. In Section 3, the proposed designs 

are obtained by developing initial blocks cyclically. Initial blocks are developed 

through sets of shifts. In Section 2, Method of Cyclic Shifts is described briefly. 

 

2. Method of Cyclic Shifts 

 

Method of cyclic shifts is explained here briefly. For detail, see Ahmed and 

Akhtar (2009).  

Rule I: Let S = [q1, q2, …, qk-1] be a set of shifts, where 1 ≤ qi ≤ v-1. If each 

element 1, 2, …, v-1 appears an equal number of times, say λ′ in a new set of 

shifts S*, where S* = [q1, q2, …, qk-1, (q1+q2+…+qk-1) mod (v), v-(q1), v-(q2), …,   

v-(qk-1), v-(q1+q2+…+qk-1) mod (v)] then initial block (0, q1, q1+q2, …, 

(q1+q2+…+qk-1) mod v )  provides circular NNBD. 
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Example 2.1: NNBD is generated for v = 13 and k = 6 by developing the initial 

block (0, 1, 3, 6, 2, 7) cyclically mod 13. Initial block is obtained from set of shift 

[1, 2, 3, 9, 5]. 

 

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 

0 1 2 3 4 5 6 7 8 9 10 11 12 

1 2 3 4 5 6 7 8 9 10 11 12 0 

3 4 5 6 7 8 9 10 11 12 0 1 2 

6 7 8 9 10 11 12 0 1 2 3 4 5 

2 3 4 5 6 7 8 9 10 11 12 0 1 

7 8 9 10 11 12 0 1 2 3 4 5 6 

 

Rule II: If any set contains k-2 elements with‘t’ then apply rule II. Let S = [q1, 

q2, …, qk-2]t be a set of shifts, where 1 ≤ qi ≤ v-2. If each element 1, 2, …, v-2 

appears an equal number of times, say λ′ in a new set of shifts S*, where S* = 

[q1, q2, …, qk-1, v-1-(q1), v-1-(q2), …, v-1-(qk-2)] then initial block (0, q1, q1+q2, 

…, (q1+q2+…+qk-2) mod (v-1))  provides circular NNBD. 

 

Example 2.2: NNBD is generated for v = 12 and k = 11 by developing the initial 

block (0, 2, 5, 9, 3, 8, 1, 4, 6, 7, ∞) cyclically mod 11 along with augmented 

block (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), where ∞ = 11. Initial block and augmented 

block are obtained through the sets of shifts: 

        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1](1/11) +[2, 3, 4, 5, 5, 4, 3, 2, 1]t 

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 

0 1 2 3 4 5 6 7 8 9 10 

2 3 4 5 6 7 8 9 10 0 1 

5 6 7 8 9 10 0 1 2 3 4 

9 10 0 1 2 3 4 5 6 7 8 

3 4 5 6 7 8 9 10 0 1 2 

8 9 10 0 1 2 3 4 5 6 7 

1 2 3 4 5 6 7 8 9 10 0 

4 5 6 7 8 9 10 0 1 2 3 

6 7 8 9 10 0 1 2 3 4 5 

7 8 9 10 0 1 2 3 4 5 6 

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
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In the process of developing initial block, ‘∞’ remains unchanged. ‘∞’ is replaced 

by v -1 in the final design and augmented block (B12) is added. The required 

design in 12 blocks is as follows: 

 

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12  

0 1 2 3 4 5 6 7 8 9 10 0 

2 3 4 5 6 7 8 9 10 0 1 1 

5 6 7 8 9 10 0 1 2 3 4 2 

9 10 0 1 2 3 4 5 6 7 8 3 

3 4 5 6 7 8 9 10 0 1 2 4 

8 9 10 0 1 2 3 4 5 6 7 5 

1 2 3 4 5 6 7 8 9 10 0 6 

4 5 6 7 8 9 10 0 1 2 3 7 

6 7 8 9 10 0 1 2 3 4 5 8 

7 8 9 10 0 1 2 3 4 5 6 9 

11 11 11 11 11 11 11 11 11 11 11 10 

 

 

3. NNBD for k = 11, 12, 13 and 14 

In this section, NNBD are constructed in circular binary blocks of size 11, 12, 13 

and 14. 

3.1 NNBD for v  = 2ik+1; i integer  

Minimal NNBD can be generated for v = 2ik+1; i integer and k = 11 in iv blocks 

by developing i initial blocks cyclically mod v.                              

Example 3.1. NNBD is generated for v = 45 and k = 11 by developing the 

following two initial blocks cyclically mod 45. 

I1 = (0, 1, 3, 6, 10, 15, 21, 28, 36, 12, 34),   

I2 = (0, 9, 19, 31, 44, 30, 1, 16, 33, 6, 25) 

 

3.2 NNBD for v = ik+1; i odd  

NNBD with λ′ = 2 can be generated for v = ik+1; i odd and k = 11 by developing 

either i initial blocks cyclically mod v (or i initial blocks (one of these block 

contains ∞) cyclically mod (v-1) along with (v-1)/11 augmented blocks).                              

Example 3.2. NNBD is generated for v = 12 and k = 11 by developing the 

following initial block cyclically mod 11 along with one augmented block. 

I1 = (0, 2, 5, 9, 3, 8, 1, 4, 6, 7, ∞), where ∞ = 11 and augmented 

block is (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) 
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3.3 NNBD for v = ik; i even 

NNBD with λ′ = 2 can be generated for v = ik; i even and k = 11 in i(v-1) blocks 

by developing i initial blocks (one of these blocks contains ∞) cyclically mod (v-

1).                              

Example 3.3. NNBD is generated for v = 44 and k = 11 by developing the 

following four initial blocks cyclically mod 43. 

      I1 = (0, 1, 3, 6, 10, 15, 21, 28, 36, 2, 13),     I2 = (0, 1, 3, 6, 10, 15, 21, 28, 36, 

2, 13),  I3 = (0, 10, 20, 32, 1, 15, 30, 3, 21, 38, 14),  I4 = (0, 15, 31, 5, 23, 42, 19, 

39, 17, 38, ∞) 

3.4 NNBD for v  = ik; i odd 

Minimal NNBD can be generated for v = ik; i odd and k = 11 by developing           

(i-1)/2 initial blocks cyclically mod v along with (v-3)/2 augmented blocks.                              

Example 3.4. NNBD is generated for v = 33 and k = 11 by developing the 

following initial blocks cyclically mod 33 along with 15 augmented blocks.      

(0, 1, 3, 7, 12, 19, 27, 4, 15, 2, 16) 

                                   

 With augmented blocks                                                                                                          

 

(0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30), (1, 2, 7, 10, 11, 16, 19, 22, 25, 28, 31),  

(2, 3, 8, 11, 12, 17, 20, 21, 26, 29, 32), (0, 6, 12, 18, 24, 30, 3, 9, 15, 21, 27),  

(1, 7, 13, 19, 25, 31, 4, 10, 16, 22, 28), (2, 8, 14, 20, 26, 32, 5, 11, 17, 23, 29), 

 (0, 9, 18, 27, 3, 12, 21, 30, 6, 15, 24), (1, 10, 19, 28, 4, 13, 22, 31, 7, 16, 25),  

(2, 11, 20, 29, 5, 14, 23, 32, 8, 17, 26), (0, 12, 24, 3, 15, 27, 6, 18, 30, 9, 21),  

(1, 13, 25, 4, 16, 28, 7, 19, 31, 10, 22), (2, 14, 26, 5, 17, 29, 8, 20, 32, 11, 23), 

 (0, 15, 30, 12, 27, 9, 24, 6, 21, 3, 18), (1, 16, 31, 13, 28, 10, 25, 7, 22, 4, 19), 

 (2, 16, 31, 13, 28, 10, 25, 7, 22, 4, 19) 

 

3.5 NNBD for v = 2ik +1; i integer 

Theorem 3.5.1. Minimal NNBD can be generated for v = 2ik+1; i integer and k 

=12 by developing the following i initial blocks mod v.                             

Ij = (0, v -(12 j -11), 1, v -(12 j -10),2, v -(12 j -9), 3, 12 j -2, 24 j -5, 12 j -3, 24 j -

4, 12 j -4);  j = 1, 2, …, i. 

Proof.  Combined set of forward and backward differences between neighboring 

elements takes all the values from 1 to v-1 once. It is, therefore, NNBD with         

λ′ = 1.  

Example 3.5. NNBD is generated for v = 49 and k = 12 by developing the 

following two initial blocks cyclically mod 49. 
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  I1 =  (0, 48, 1, 47, 2, 46, 3, 10, 19, 9, 20, 8),      

I2  = (0, 36, 1, 35, 2, 34, 3, 22, 43, 21, 44, 20) 

 

3.6 NNBD for v  = ik +1; i = 2s+1; s integer 

 Theorem 3.6.1. NNBD can be generated for v = ik +1; i = 2s+1; s integer and        

k =12 with λ′ = 2 by developing the following i initial blocks mod v.  

Ij = (0, v -(12 j -11), 1, v -(12 j -10),2, v -(12 j -9), 3, 12 j -2, 24 j -5, 12 j -3, 24 j -

4, 12 j -4); Ij+z = (0, v -(12 j -11),1, v -(12 j -10),2, v -(12 j -9),3, 12 j -2, 24 j -5, 

12 j -3, 24 j -4, 12 j -4);   j = 1, 2,…, .s  

Ii = (0,(v +11)/2,1, (v +9)/2, 2, (v +7)/2, 3, (v -5)/2, ( v -6), (v -3)/2, (v -3), ( v -

1)/2) 

Proof.  Combined set of forward and backward differences between neighboring 

elements takes all the values from 1 to v -1 twice. So it is NNBD with λ′ = 2.   

Example 3.6. NNBD is generated for v = 37 and k = 12 by developing the 

following three initial blocks cyclically mod 37. 

  I1 = (0, 36, 1, 35, 2, 34, 3, 10, 19, 9, 20, 8),  

I2 = (0, 36, 1, 35, 2, 34, 3, 10, 19, 9, 20, 8), 

  I3 = (0, 24, 1, 23, 2, 22, 3, 16, 31, 17, 34, 18) 

3.7  NNBD for v = ik; i (>1) integer 

NNBD can be generated with λ′ = 2 for v = ik; i(>1) integer and k = 12 by 

developing i initial blocks (one of these blocks contains ∞) cyclically mod (v -1).  

Example 3.7. NNBD is generated for v = 36 and k = 12 by developing the 

following three initial blocks cyclically mod 35. 

  I1 = I2 = (0, 3, 4, 6, 10, 15, 21, 28, 1, 27, 2, 13),  

I3 = (0, 12, 27, 6, 22, 4, 16, 30, 10, 26, 8, ∞) 

3.8  NNBD when HCF of v -1 and k is 4; (v -1)/4 even  

NNBD can be generated with λ′ = 3, k = 12;  (v -1)/4 is even when HCF of v -1 

and k is 4 by developing (v -1)/8 initial blocks cyclically mod v.  

Example 3.8. NNBD is generated for v = 17 and k = 12 by developing the 

following two initial blocks cyclically mod 17. 

  I1 = (0, 7, 9, 10, 15, 4, 5, 13, 16, 2, 6, 8),  

I2 =  (0, 1, 3, 6, 10, 15, 4, 11, 2, 8, 12, 7) 

3.9 NNBD for v = 2 ik +1; i integer 

Minimal NNBD can be generated for v = 2ik+1; i integer and k = 13 in iv blocks 

by developing i  initial blocks cyclically mod v.                              

Example 3.9. NNBD is generated for v = 53 and k = 13 by developing the 

following two initial blocks cyclically mod 53. 
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 I1 = (0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 2, 13, 25),    

 I2 = (0, 13, 28, 42, 5, 22, 4, 23, 43, 11, 33, 3, 27) 

3.10 NNBD for v = ik +1; i odd  

NNBD with λ′ = 2 can be generated for v = ik +1, i odd and k = 13 in iv blocks by 

developing either i initial blocks cyclically mod v (or i initial blocks (one of these 

blocks contains ∞) cyclically mod (v -1) along with (v -1)/13 augmented blocks).                              

Example 3.10(a). NNBD is generated for v = 40 and k = 13 by developing the 

following three initial blocks cyclically mod 40. 

 I1 = I2 = (0, 1, 3, 6, 10, 15, 21, 28, 36, 5, 23, 33, 12),  

 I3 = (0, 11, 22, 35, 8, 23, 37, 12, 26, 10, 27, 4, 20) 

Example 3.10(b). NNBD is generated for v = 66 and k = 13 by developing the 

following five initial blocks cyclically mod 65 along with five augmented blocks. 

   I1 = I2 = (0, 1, 3, 6, 10, 16, 23, 31, 40, 50, 61, 8, 21),  

   I3 = I4 = (0, 51, 1, 17, 34, 52, 7, 26, 48, 6, 30, 55, 29), 

   I5 = (0, 27, 55, 20, 51, 18, 45, 8, 38, 4, 36, 41, ∞), where ∞ = 65  

                                                         

Augmented blocks 

(0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60),  

(1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, 61),  

(2, 7, 12, 17, 22, 27, 32, 37, 42, 47, 52, 57, 62),  

(3, 8, 13, 18, 23, 28, 33, 38, 43, 48, 53, 58, 63),  

(4, 9, 14, 19, 24, 29, 34, 39, 44, 49, 54, 59, 64) 

3.11 NNBD for v = ik; i even 

NNBD with λ′ = 2 can be generated for v = ik; i even and k = 13 in i(v-1) blocks 

by developing i initial blocks (one of these blocks contains ∞) cyclically mod (v -

1).                              

Example 3.11. NNBD is generated for v = 52 and k = 13 by developing the 

following four initial blocks cyclically mod 51. 

  I1 = I2 = (0, 1, 3, 6, 10, 16, 21, 28, 36, 45, 4, 15, 27),    

  I3 = (0, 13, 27, 43, 7, 24, 42, 10, 30, 1, 22, 45, 19), 

  I4 = (0, 13, 27, 43, 7, 24, 42, 11, 33, 3, 26, 1, ∞),  where ∞ = 51 

3.12 NNBD for v = ik; i odd 

Minimal NNBD can be generated for v = ik; i odd and k = 13 by developing          

(i-1)/2 initial blocks cyclically mod v along with (v -3)/2 augmented blocks.                              

Example 3.12. NNBD is generated for v = 39 and k = 13 by developing the 

following initial block cyclically mod 39 along with 18 augmented blocks. 

                                     (0, 1, 5, 7, 2, 9, 17, 27, 38, 12, 26, 3, 20),                          
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Augmented blocks 

(0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36), 

(1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37), 

(2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38), 

(0, 6, 12, 18, 24, 30, 36, 3, 9, 15, 21, 27, 33), 

(1, 7, 13, 19, 25, 31, 37, 4, 10, 16, 22, 28, 34), 

(2, 8, 14, 20, 26, 32, 38, 5, 11, 17, 23, 29, 35), 

(0, 9, 18, 27, 36, 6, 15, 24, 33, 3, 12, 21, 30), 

(1, 10, 19, 28, 37, 7, 16, 25, 34, 4, 13, 22, 31), 

(2, 11, 20, 29, 38, 8, 17, 26, 35, 5, 14, 23, 32), 

(0, 12, 24, 36, 9, 21, 33, 6, 18, 30, 3, 15, 27), 

(1, 13, 25, 37, 10, 22, 34, 7, 19, 31, 4, 16, 28), 

(2, 14, 26, 38, 11, 23, 35, 8, 20, 32, 5, 17, 29)  

(0, 15, 30, 6, 21, 36, 12, 27, 3, 18, 33, 9, 24), 

(1, 16, 31, 7, 22, 37, 13, 28, 4, 19, 34, 10, 25), 

(2, 17, 32, 8, 23, 38, 14, 29, 5, 20, 35, 11, 26), 

(0, 18, 36, 15, 33, 12, 30, 9, 27, 6, 24, 3, 21), 

(1, 19, 37, 16, 34, 13, 31, 10, 28, 7, 25, 4, 22), 

(2, 20, 38, 17, 35, 14, 32, 11, 29, 8, 26, 5, 23) 

 

3.13 NNBD for v = ik; i(>1) integer 

NNBD with λ′ = 2 can be generated for v = ik; i(>1) integer and k = 14 by 

developing i initial blocks (one of these blocks contains ∞) cyclically mod (v -1).                           

Example 3.13. NNBD is generated for v = 42 and k = 14 by developing the 

following three initial blocks cyclically mod ( v -1). 

I1 = I2 = (0, 1, 3, 6, 10, 15, 21, 28, 36, 4, 14, 25, 37, 13),  

I3 = (0, 14, 29, 4, 23, 2, 16, 34, 8, 24, 1, 20, 40, ∞) 

3.14 NNBD for v  = 2 ik +1; i integer 

Minimal NNBD can be generated for v = 2ik +1; i integer and k = 14 by 

developing i initial blocks cyclically mod v.                           

Example 3.14. NNBD is generated for v = 57 and k = 14 by developing the 

following two initial blocks cyclically mod 57. 

  I1 = (0, 1, 3, 6, 10, 15, 22, 28, 36, 45, 55, 9, 21, 34) 

  I2 = (0, 43, 1, 17, 34, 16, 35, 55, 19, 41, 8, 33, 2, 29) 

3.15 NNBD for v = ik+1; i (>1) odd 

NNBD with λ′ = 2 can be generated for v = ik +1; i(>1) odd and k = 14 by 

developing i initial blocks cyclically mod v.                           
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Example 3.15. NNBD is generated for v = 43 and k = 14 by developing the 

following three initial blocks cyclically mod 43. 

  I1 = I2 = (0, 1, 3, 6, 10, 15, 21, 28, 36, 2, 12, 23, 35, 13) 

  I3 = (0, 19, 33, 5, 21, 40, 14, 37, 8, 23, 39, 13, 38, 20) 
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