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ABSTRACT  

  

The paper provides a multivariate extension of generalized linear 

model for polytomous data and considers the logistic regression 

model as a special case. Complete Bayes analysis of polytomous data 

assuming logistic regression model is provided using appropriate non-

informative priors for the parameters. Since the resulting posteriors 

analysis is quite complex, appropriate Markov chain Monte Carlo 

algorithm has been developed for the same. Results are illustrated on 

the basis of a real data example related to biliary acid constituents of 

the patients having gallbladder diseases. 

 

1. INTRODUCTION 
 

An epidemiological research comprises two types of studies depending on 

whether the events have already happened (retrospectively) or whether the 

events may happen in the future (prospectively). The most common studies 

are the retrospective studies which are also called case-control studies. Case-

control study is an analytical study in which a group of patients having a 

particular disease (cases) is compared with a group of persons who do not 

have that disease (controls) but exposed to the risk of the same. Study is 

done with respect to the exposure of one or more than one risk factors. The 
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central theme of a case-control study is to compare the diseased group with 

non-diseased group with respect to the exposure of risk factor. This type of 

study provides an association of the risk factor with the (often) higher 

incidence of disease in the population exposed to that particular risk factor. 

The measurement of association between the exposure and occurrence of the 

disease is done through odds ratio which is the ratio of odds of exposure in 

diseased group to that of non-diseased group. 

Odds ratio is an important measure of relative risk that ranges from zero to 

infinity in value. A value close to unity indicates no relationship between the 

occurrence of the disease and the exposure risk factor. On the other hand, a 

value less than unity or a value greater than unity indicates the protective or 

causative effect of the exposure factor, respectively. Truly speaking, odds 

ratio is the answer to the question, how frequently the exposure to a risk 

factor is present in each group of cases and controls to determine the 

relationship between the risk factor and the disease. This measure is directly 

connected to the logistic regression relationship for dichotomous or binary 

responses that models the natural logarithm of odds ratio as the linear 

function of the predictor variables and also provides the possibility to 

generalize the odds ratio beyond dichotomous responses. 

It is worth mentioning that several types of responses are encountered by the 

biomedical researches and, therefore, it is very common to categories the 

patients on the basis of their responses to any treatment, severity of disease 

or some test results, etc. Suppose, for instance, the response of a patient is 

denoted by a dichotomous or binary type random variable Y and, as such, Y 

takes value either unity or zero. This actually reflects two categorizations of 

the patients such as alive or dead, cured or uncured, injured or not injured, 

HIV positive or HIV negative, etc. Besides, there may be some intermediate 

or adjacent categories (or responses) apart from the two main categories. 

Say, for instance, a patient can be categorized according to the severity of 

the disease as ‘mild’, ‘modest’ or ‘severe’. Similarly, a doctor can categorize 

a patient as ‘good’, ‘fair’, ‘serious’ or ‘critical’ based on the stages of (say) 

cancer growth. All such instances or categories can be treated as polytomous 

where the variable Y can be assigned several values, say 0, 1, 2,  ... based on 

the types of responses or categorizations. 

Generally, polytomous responses are classified into three different categories 

in accordance with three different scales. These are often termed as nominal, 
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ordinal and interval scales. The nominal scales are those where categories 

can be interchanged and there is no specific ordering among the different 

categories. An important example can be the categorization according to 

(say) eye’s colour as ‘black’, ‘brown’, ‘blue’. Nominal scales are generally 

treated as the lowest scales of polytomous responses. In ordinal scale, 

categories can be placed in a specific manner much like the ordinal numbers 

(either in ascending or in descending order) and they are not exchangeable. 

Examples of such polytomous responses include degree of injuries and 

tumor sizes, stages of cancer, etc. It is to be noted that in such 

categorizations, it does not make sense to talk of the notion of distance and 

spacing among the categories. Say, for example, it is wrong to say that a 

particular category is three times greater (or less) than the other one. Third 

type of polytomous responses include interval scales where the categories 

can be ordered and numerical labels can also be attached. Differences 

between the numerical labels (or scores) on different categories can, 

therefore, be interpreted as a measure of separation of the categories. 

Examples of responses with interval scales include age distribution, blood 

pressure levels, pulse counts, etc. where scores are generally defined at the 

midpoint of the intervals. 

The responses resulting to polytomous data may incorporate two kinds of 

correlations among the variates. This may be because of the fact that 

responses to various polytomous items may be dependent as a consequence 

of clustered or mingled structure of data and also because of the fact that the 

response to a single polytomous item can be seen as a multivariate 

dependent response. These two correlations are often referred to as within 

cluster and between cluster correlations and play a crucial role while 

defining a model for polytomous data. There may be situations, however, 

when one or both the correlations may not appear directly or may be weak 

enough to foresee. Literature provides enough references on various kinds of 

modelling related to different response variables as well as their analyses. A 

few among these can be cited as Agresti (2002), McCullagh and Nelder 

(1989), Liang (1999), etc. 

For a dichotomous response with Y = 1 or 0, we obviously get among others 

the logistic regression model, which is a special case of generalized linear 

model (GLM) with “logit” link and binomial distribution for the random 

component Y, the probability of success being the expectation of Y . GLM 

has its natural extension for polytomous data as well and the resulting 



Srivastava et  al. 

96 

 

special case can be referred to as the polytomos logistic regression where the 

link function as usual is “logit” but the distribution of random component is 

now multivariate Bernoulli, which is same as a multinomial distribution with 

total count unity. Generally speaking, a polytomous variable can be 

structured as the multivariate variable and, among other things, the 

components of this multivariate variable may be taken as binary type having 

some correlation among them. 

Both the multivariate extension of GLM and its special case, the polytomous 

logistic regression model, has been considered extensively in the classical 

statistical literature. Rasch (1961) 
 
is perhaps an early reference that provides 

the applicability of one such model in an educational measurement context 

although GLM was first introduced by Nelder and Wedderburn (1972). 

Other significant references include Andrich (1978), Agresti (2002),
 
etc., 

where both GLM and its different special cases are successfully dealt. It is to 

be noted that GLM is one of the most important contributions that unifies 

several models such as multiple linear regression, logistic regression, log-

linear regression and Poisson regression, among others. Since these latter 

models are regularly employed by various researchers to study how the 

values of outcome variable vary over the different configuration of predictor 

variables, GLM has given an easy response where all these models can be 

housed together and successfully analyzed. This is perhaps the reason that 

GLM has maximum applicability in almost every area including the 

biomedical researches. It is worth mentioning that the objective of any 

regression analysis including GLM in biomedical applications is to establish 

a kind of linking between the particular test results and disease as the study 

of such linking enables the researchers to understand and identify the causal 

factor of the level of disease so that the appropriate treatment can be 

accordingly suggested. 

Bayesian inferences to multivariate GLM or its special case ‘polytomous 

logistic regression model’ are comparatively meager though the previous 

two decades provided significant developments in several applied areas. A 

few important references include Draper and Smith (1998), Congdon (2004), 

Gelman and Hill (2007), etc. where a few among these provide realistic 

examples from a variety of areas. The reason for such rapid developments 

can, of course, be attributed to enormous progresses in Bayesian modelling 

and computational techniques. 

The paper is organized as follows. In Section 2, we briefly discuss the  
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polytomous logistic regression model and provide its complete Bayesian 

formulation by choosing non-informative priors for its parameters. We also 

provide a brief discussion on the associated computational issues using 

Gibbs sampler algorithm. Section 3 discusses a few important Bayesian 

tools, namely the Bayesian information criterion (BIC), deviance 

information criterion (DIC) and posterior Bayes factor. This is being done 

for the completeness of the paper. Section 4 provides a brief description of a 

real data on biliary acid constituents of gallbladder patients that has been 

used for the purpose of numerical illustration. The corresponding numerical 

illustration is given in Section 5. Section 6 focuses on the justification of 

modeling assumption by an informal procedure and also provides the 

comparison of full and reduced models by using the tools discussed in 

Section 3. Finally, a brief conclusion is given in the last section. 

 

2. MODELLING FORMULATION 
 

Without going into the details of GLM or its multivariate analogue, let us 

focus our attention on the special case of polytomous logistic regression 

model. The interested readers may refer to Liang (1999), Tuerlinckx and 

Wang (2004), etc. for a thorough discussion on GLM, its multivariate 

analogue and several other special cases of GLM. 

 

2.1 Polytomous logistic regression model 

To begin with, let us consider k possible response categories (j = 0, 1, ···, k-

1) and suppose the response of an individual falls in one of these categories. 

We write Y = j where Y is used to denote the polytomous response variable 

and j is used to denote the response of an individual, j = 0, 1, ···, k-1. The 

assumption of response to lie in one of the categories simplifies the 

modelling formulation although one can consider a more generalized 

situation and allow the response of an individual to fall in more than one 

category. Clearly, k=2 refers the binary case where Y is allowed to take 

only two values 0 and 1. Moreover, the difference between binary and 

polytomous data is that the latter is multivariate or a vector valued random 

variable. In order to provide basis for defining an appropriate model, we 

further associate a random vector C consisting of k−1 components (the 

length is one less than the number of categories) with each response Y=j and 

assign values zeros and ones to the components of C. If c j ,  j = 1,2,...,k−1 

denotes the j
th 

component of this random vector C, it may be defined as 
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More precisely, responses to different categories can be converted into a 

random vector as shown in Table 1. 

Table 1: A simple illustration of polytomous data 

Response variable       

Y 

  Random Vector C 

 c1 c2 c3 ... ck-1 

0 0 0 0 ... 0 

1 1 0 0 ... 0 

2 0 1 0 ... 0 

. . . . ... . 

k-1 0 0 0 ... 1 

      

Obviously, Table 1 provides the indicator version of polytomous responses 

of the variable Y which may be used to define the probability mass function 

given as 

1,...,1,0;)...1(...)( 11121 .....1
11121   
 kjpppppjYP kk cc

k
c

k

cc
             (2.2) 

where Y = 0 denotes the base line category response and the probability of 

responding in this category is P(Y = 0) = 1 – p1  − p2... − pk−1. Equation (2.2) 

is the probability mass function of multivariate Bernoulli distribution with pj 

as the probability of responding in the category j, j = 1, ..., k − 1, p0 = P(Y = 

0) and  . The mean of the distribution is the vector of marginal 

probabilities p= (p1, p2, ..., pk-1)
T 

and the variance of each univariate 

component is p j (1 – p j), j = 1,2,...,k − 1. Also the covariance between two 

components is given by –p i  p j , i  ≠j. 

2.2  Link function 

In order to complete the modelling formulation, let us next consider defining 

the link function so that the response variable can be linked to the 

corresponding predictor variables. Here it is logical to assume that the 
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vector-valued link function f link transforms the vector of means of the 

multivariate Bernoulli distribution (2.2) and it may written as  

T

k

T

kklinklinklinklink pfpfpfpf )...())()...()(()( 1211)1(2211          (2.3) 

where f link j( p j) corresponds to η j and η j is the j
th  

linear predictor. We are 

using here the base line category for defining the logit link function, which 

is given by 

j

Tj
X

p

p


0

log  j=1, 2, …., k-1                                                              (2.4) 

where X
T 

denotes the vector of predictor variables, η j = X
T 
βj is the j

th 
linear 

predictor and βj is the column matrix of intercept and regression coefficients 

for j
th 

category. That is 

T
mXXXX )1( 21                                                                     (2.5) 

T
mjjjj )( 10                                                                          (2.6)  

Provided there are m predictor variables X1, X2, ...,  Xm and j = 1, 2,··· , k − 1. 

Solving these k-1 equations simultaneously, the probability for responding in 

j
th  

category can be obtained as 
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whereas the corresponding probability for responding in base line category 

p0 can be given as 









1

1

0

)exp(1

1
k

j

j
TX

p



                                                                         (2.8)  

obviously, the model formulation given above reduces to that for 

dichotomous data if only two categories are entertained and this may be 

done by collapsing the k (k ≥ 3) categories into two. In this case the response 
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variable Y takes value 1 or 0 and the corresponding probability mass 

function is given by univariate Bernoulli distribution defined as 

1,0;)1()( 1   jppjYP jj
                                                               (2.9) 

where p is the probability that Y takes value unity. The vector valued link 

function converts into a single link which transforms expected value of the 

response variable as a function of linear predictor X
T 

β. That is 

)()( 1  T
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T
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with logit link given as 
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 where X = (1    X1      X2 ... Xm)
T 

and β = (β0      β1     β2     .. . βm)
T 

. It may be noted 

that the use of subscript j is not needed in case of dichotomous response 

variable. 

2.3  Bayesian modelling formulation and Gibbs sampler implementation 

Let us consider a situation where n items or individuals are giving responses 

to be categorized in one out of k categories as detailed in Subsection 2.1. We 

further suppose that the vector of predictor variables is determined for each 

of n individuals separately. The likelihood corresponding to polytomous 

logistic regression model ((2.2)-(2.6)) can be written as 
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where X
T

i = (1 X1i     X2i    ... Xmi) and X1i, X2i    ,··· ,Xmi are the values of m 

predictor variables corresponding to i-th item or individual. Also each β j,   j 

= 1,2,··· , k − 1, is a column matrix defined as in (2.6). 

The above formulation clearly shows that the number of parameters (k −1) 

(m+1) is usually large and increases with the increasing number of response 

categories k and/or the increasing number of predictor variables m. With 

increasing k and m, the parameters are difficult to estimate by usual classical 

methods. To proceed in a Bayesian framework, we begin by defining 
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independent uniform priors for each of the components of the parameter 

vector βj. For each component, the same may be defined separately as          

G (βlj) = constant ; Ulj  ≤  βlj  ≤  Vlj,                                                 (2.12) 

where j = 1,2,··· ,k − 1. and l = 0,1,··· ,m. Since we do not have any 

information about the intercepts and regression coefficients, in general, we 

propose to consider large difference between Ulj and Vlj so that priors remain 

vague and the inferences may be mostly data driven. 

Combining (2.11) and (2.12) via Bayes theorem yields the joint posterior 

distribution that can be specified up to proportionality as 
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Although the posterior distribution is complicated to solve analytically, the 

numerical solution is always an option. Among various possibilities, we can 

implement Gibbs sampler algorithm, a Markovian updating scheme, to 

simulate from the posterior (2.13). The algorithm provides a straightforward 

solution based on simulating from various full conditionals defined up to 

proportionality from (2.13) though the alternative forms of MCMC can 

equally well be used. 

In order to apply the Gibbs sampler algorithm, the corresponding full 

conditionals for the intercepts and the regression coefficients can be written 

as 
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respectively, where j varies from 1 to k − 1 and l varies from 1 to m. It is to 

be noted that if there are k categories and m predictor variables, we have (k − 
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1) (m + 1) full conditionals in all (refer (2.14) and (2.15). These full 

conditionals can be shown to be log concave so samples can be generated, 

say, by using adaptive rejection sampling scheme of Gilks and Wild (1992). 

 

3. A FEW IMPORTANT TOOLS FOR STUDYING MODEL 

COMPATIBILITY AND COMPARISON 

  

This section although appears to be an odd combination at first sight, has 

been brought here for the completeness of the work. The section mostly 

discusses a few important tools for studying model compatibility and model 

comparison in Bayesian paradigm. Such tools are numerous in number but 

we provide a very brief review discussion focusing on only those tools 

which are used in the latter sections. The interested readers may refer the 

cited references for a complete discussion and relevant material. 

It is to be noted that whenever we assume a model for a given data, it is 

important to know if the model under consideration is compatible with data 

in hand. Model compatibility study in Bayesian paradigm can be done in a 

variety of ways involving both formal and informal approaches. An informal 

approach can be based on predictive simulation idea where compatibility can 

be judged by plotting certain characteristics of both observed and predictive 

data sets, latter obtained on the basis of assumed modelling formulation in 

Bayesian paradigm. If the plot shows identical behavior of the two data 

based characteristics, there is no issue to go against the model (a 

combination of both likelihood and prior) and, as such, it can be considered 

compatible with the data in hand. This informal approach has been discussed 

by a number of authors where the authors have advocated considering 

certain graphical tools for plotting characteristics such as empirical 

distribution functions or hazard functions obtained separately for both 

observed and predictive data sets, Upadhyay and Smith (1994).
 
Formal tools 

based on numerical summaries such as Bayesian versions of p-values can 

also be used but we do not go into details of such measures as our primary 

objective does not focus much on the study of model compatibility. One can 

refer to Bayarri and Berger (1998) for details on such measures. 

The model comparison tools, on the other hand, compares two models where 

both the models happen to be important candidates for the data in hand. It is 

to be noted that we are mainly interested in testing of statistical hypothesis 

or variable selection but we visualize this as a problem of model  
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comparison. To provide our exact objective, let us reconsider the 

polytomous logistic regression model discussed in Section 2. This model is 

likely to incorporate too many parameters in the form of regression 

coefficients especially when the situation requires considering a large 

number of predictor variables. In such a case, interest may often center to 

see if some of the regression coefficients can be tested against zero. If the 

conjecture of testing against zero is found to be correct, the dimensionality 

of the original problem reduces and thereby providing the scope for 

simplified inferential developments. The problem can be alternatively 

defined as that of model comparison where we have a model with large 

dimensionality on one hand and a model with reduced dimensionality on the 

other. 

A number of tools have been proposed for comparing the models in 

Bayesian paradigm. The most pertinent being the Bayes factor that requires 

considering the ratio of weighted likelihood functions for the two models 

where weights are being offered by the considered prior distributions. The 

Bayes factor is certainly the most appealing measure although it suffers from 

a few important caveats especially when the priors are vague and the 

dimensionality of the model demands for extensive and sophisticated 

computational strategies, Upadhyay et al (2012).
 
An easy to use version 

proposed by Aitkin (1991)
 
is the posterior Bayes factor (PBF) that has been 

used extensively in the literature although it suffers from an important 

drawback (see also Upadhyay and Peshwani (2007)). We shall not go into 

details of such issues rather propose to use the version simply for its 

computational ease. The posterior Bayes factor can be defined as 

                                   B12 =   
  

  /    
  

 ,                                                       (3.1) 

where    
  

   is posterior mean of likelihood under the model i, i = 1, 2. 

Obviously, one can go with model 2(1) if B12 is less (greater) than unity. 

The Bayes information criterion (BIC) and the Deviance information 

criterion (DIC) are the two other important measures that have been 

considered extensively in the literature. The BIC for model i can be defined 

as 

2,1),log(*)log(*2
^

 inkLBIC iii
                                          (3.2) 
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Where   i
 
is the likelihood calculated at posterior mode although posterior 

mean is also recommended in the literature. k i   is the number of parameters 

in the model i and n is number of observations. It is to be noted that the 

second term in BIC is used to penalize a more complex model. The model 

corresponding to least value of BIC is finally recommended. 

Similarly, DIC for model i can be defined as 

 

,2,1,)(  iPDDIC
iDiii                                                                   (3.3) 

where Di(Θi) is the deviance defined as Di(Θi) = −2log(Li(Y |Θi)),  )( iiD  is 

the posterior mean of deviance, Θi denotes the vector valued parameter 

associated with the model i. The second term 
iDP  in (18) is the number of 

effective parameters for the model i, defined as 
iDP  =                −D(  i), where 

  i is an estimate of Θi, usually taken as posterior mean, Spiegelhalter et al 

(2002). The term 
iDP  can also be interpreted as expected reduction in 

uncertainty due to estimation and, therefore, it is natural to consider it as a 

measure of model complexi 

4. A REAL DATA DESCRIPTION AND THE CORRESPONDING 

BAYESIAN MODELLING SUMMARIZATION 

The section provides a description of data on concentration of bile acid 

constituents (in mg/ml) collected at SS Hospital, Banaras Hindu University, 

among n = 61 gallbladder patients. The bile acid constituents are cholic acid 

(CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA) and 

lithocholic acid (LCA) where the first two acids are referred to as the 

primary acids and the remaining two as the secondary acids. Bile samples 

were collected from three groups of patients, namely, control, cholelithiasis 

and gallbladder carcinoma, admitted to the University hospital. Patients who 

underwent laporotomy for diseases other than hepatobiliary tract served as 

control. Patients of benign gallbladder disease who were diagnosed to have 

gallbladder stone and underwent cholecystectomy and histologically proved 

to be benign lesion served as the cholelithiasis group and the third group 

consisted of patients of carcinoma of the gallbladder who underwent 

laparotomy and subsequently confirmed by histopathology to be malignant. 
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Each group consisted of 20 patients except the cholelithiasis group that had 

21 patients. The complete set of observations are not reported due to 

confidentiality reasons, however, interested readers may contact the authors 

for any further query. 

The observations were taken by fine needle aspiration of the gallbladder 

during laparotomy with extreme care to avoid contamination of bile samples 

with blood. The samples were stored at −20
◦
C until analyzed. Peaks of 

individual bile acids were identified by comparison with peaks of standard 

bile acids. CA was determined independently and concentration of other 

constituents was determined according to their ratio to CA from the gas-

liquid chromatogram. Among early work on the data, one can refer to 

Shukla (1993), Makkar (2009). The authors observed that the patients with 

gallbladder carcinoma had higher concentration of secondary bile acids in 

comparison to the patients in other two groups. Makkar (2009), however, 

attempted to draw the same conclusion by considering a particular case of 

generalized linear model but she worked with only a part of the data and, as 

such, the sample size was not enough. 

Table 2: Classification of four bile acid constituents in accordance with 

polytomous scheme 

Patient 

no. 

CA  CDCA  DCA  LCA  Response variable  

                                                           Y 

1                 0 

2                 0 

... ... ... ... ... ... 

i                 1 

... ... ... ... ... ... 

n                 2 
 

We, however, visualize the data in a slightly different manner in order that it 

may appear appropriate for the modelling formulation given in Section 3. 

We associate with each patient a polytomous response variable Y taking 

values 0, 1, and 2 where the value 0 corresponds to control group, 1 

corresponds to cholelithiasis and 2 corresponds to carcinoma group. As such 

the data may finally appear in accordance with the pattern shown in Table 2. 
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Obviously, the scheme reflects the simplified version of polytomous data 

shown in Table 1 with concentration of four bile acid constituents in the 

gallbladder as the predictor variable and different gallbladder diseases to a 

patient as the response variable. It is to be noted that Y takes value 0 for 20 

control patients, 1 for 21 cholelithiasis patients and 2 for remaining 20 

carcinoma patients. 

Obviously, the response variable Yi   with the three possible responses (0, 1, 

2) can be converted into a random vector Ci for the patient i, i = 1, ... , n. The 

realizations for the corresponding random vector can be given by c i1 and c i2 

and according to the structure given in Table 1, the response variable and the 

associated random vector for the three categories can be given as follows 

Table 3: Polytomous structure for gallbladder disease corresponding to 

patient i 

Response variable Yi RandomVector Ci 

c i1 c i2 

0 0 0 

1 1 0 

2 0 1 
 

For numerical illustration, we shall consider the same real data set with an 

objective to examine how the concentration of bile acid constituents effect 

the three categories of gallbladder diseases. 

Before we come to the next section, let us re-write the Bayesian modelling 

formulation given in Section 2 for k = 3 in order to cover the present data 

description. If (ci1, ci2) denotes the realization of random vector for i
th 

response, the corresponding likelihood function can be written as 


 


n
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i

T

i
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i
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XX

XX
XYL

ii
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21
)exp()exp(1
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                           (4.1) 

Where 

iiii

T

i xxxxX 441331221111011  

iiii

T

i xxxxX 442332222112022    
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In (4.1), both β01 and β02 denote the intercepts associated with control versus 

cholelithiasis groups and control versus carcinoma groups, respectively. 

Similarly, β11 (β12),  β21 (β22),  β31 (β32),  β41 (β42)  are the regression co-

efficients associated with bile acid constituents CA, CDCA, DCA and LCA, 

respectively, corresponding to control versus cholelithiasis (control versus 

carcinoma) groups and, being the results of logit link, these may be 

interpreted as the change in log odds for the unit change in corresponding 

predictor variable when the others remain fixed. 

The prior distributions for intercepts and regression co-efficients can be 

defined independently for each of these parameters and, in lack of any 

authentic information, the same can be defined as in (2.12) with j = 1 ,2 and 

l = 0, 1, ... ,4. Moreover, we propose to consider large values for the prior 

hyperparameters Ul j and Vl j in order that the prior remains vague in each 

case. Thus combining the prior distributions so defined with likelihood in 

(4.1) via Bayes theorem results in the joint posterior distribution that can be 

written up to proportionality as 


 



n
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1 21

21
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)exp()exp(1

))(exp())(exp(
),|,(

21
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
                                     (4.2) 

where the ranges of β1, β2 are same as those given in the corresponding prior 

distributions. Like (2.13), the posterior distribution (4.2) is also difficult to 

solve analytically and, therefore, one can use Markov chain Monte Carlo 

simulation to get the desired sample based posterior characteristics. It can be 

shown that the form (4.2) is a good candidate for Gibbs sampler algorithm 

with all its full conditionals available from the viewpoint of sample 

generation. In fact, all the ten full conditionals corresponding to β01, β02 and 

(β11, β12), ... , (β41,β42) can be shown to be logconcave and, therefore, 

adaptive rejection sampling algorithm can be used for sample generation in 

each case.
11 

 

4.1 Numerical results on intercepts and regression coefficients 

To implement the Gibbs sampler algorithm on the posterior (4.2), we 

consider a single long run of the chain using least squares estimates of the 

intercepts and regression coefficients as the initial values. 
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The convergence of iterating Markovian chain is assessed by monitoring the 

ergodic averages for each unknown variate in (4.2). The convergence 

monitoring is successfully achieved at about 50K iterations for each of the 

unknown variate value although the chain was allowed to run beyond 100K 

iterations to have an added guarantee on the convergence. Once the 

convergence is assured, we select samples of size 1K from each of the 

marginal posteriors of the intercepts and regression coefficients.
12 

To 

minimize serial correlation among the generating variates, selection of final 

1K sample is done by picking up variate values at every 10th iteration. 

The sample based estimates of a few important posterior characteristics are 

shown in Table 4. These characteristics are in the form of sample based 

estimates of posterior mean, median, mode, lower quartile (Q1), upper 

quartile (Q3) and posterior variance obtained for various marginal posteriors. 

Table also provides the estimated highest posterior density interval (HPDI) 

with probability coverage 0.95 for each of the model parameters. 

The values corresponding to β01 and β02 represent the estimated posterior 

intercepts. These values may be of relevance when all the biliary acid 

constituents are zero, a situation that is almost impossible in any medical 

finding. Thus the intercepts have no intrinsic meaning and, therefore, we 

skip any further discussion on their estimated results and it has not been 

included in the table. It can be further seen that the estimated regression 

coefficients (β11 , β21) and (β12, β22) corresponding to primary acids CA and 

CDCA are all negative for both cholelithiasis and carcinoma groups when 

compared with the control group. These results have an obvious reverse 

interpretation. That is, if the concentration level of primary acid depreciates, 

a patient in the control group has higher possibility of entering into the 

diseased group. This interpretation is obviously given under the assumption 

of changing the concentration of one primary acid and keeping other at the 

same level. Also, a larger numerical value of regression coefficient of CA 

than that of CDCA indicates a higher effect of CA as the risk factor than that 

of CDCA. 

The data set also reveals significantly higher concentration of two secondary 

acids, DCA and LCA, in cholelithiasis and carcinoma groups in comparison 

to the control group. It can be seen that the positive values of regression 

coefficients corresponding to secondary acids (β31, β41) and (β32, β42) indicate  
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that the chances of entering into cases from control increase as the levels of 

secondary bile acids increase. It can be further seen that a larger numerical 

value of regression coefficient corresponding to DCA than that 

corresponding to LCA indicates a higher effect of former as the risk factor 

for carcinogen than that of latter although the trend is reversed for 

cholelithiasis group (see Table 4). 

Table 4: Sample based marginal posterior characteristics of various 

regression coefficients 

Variate 1Q        mean       median    mode     Q3       posterior  var    HPDI 

  β 11 -0.587 -0.496 -0.481 -0.444 -0.382 0.026 (-0.797, -0.198) 

β 21 -0.235 -0.156 -0.148 -0.144 -0.063 0.018 (-0.424, 0.097) 

β 31 0.039 0.172 0.165 0.144 0.292 0.035 (-0.181, 0.548) 

β 41 0.858 1.277 1.233 1.206 1.625 0.337 (0.219, 2.391) 

β 12 -9.429 -8.349 -8.776 -9.182 -7.529 2.103 (-9.999, -5.517) 

β 22 -1.727 -1.359 -1.383 -1.461 -1.008 0.306 (-2.387, -0.252) 

β 32 6.756 7.653 7.795 7.846 8.723 2.634 (4.146, 10.541) 

β 42 0.456 1.961 1.889 1.732 3.496 5.098 (-2.035, 6.816) 

 

The marginal posterior density estimates of regression coefficients β11, β21, 

β31 and β41 are shown in Figure 1 in the form of histograms whereas the 

corresponding density estimates of β12, β22, β32 and β42 are presented in 

Figure 2. The vertical line in each Figure corresponds to maximum 

likelihood estimate of the corresponding model parameter. Obviously, the 

figures provide an overall impression about different marginal densities of 

various regression coefficients. Say, for instance, the parameters β11 and β21 

are both  negatively  skewed  with small variability  in the two cases and the  
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values mostly inclined towards negatives, although the value of β21 is very 

much close to zero, a conclusion that is obvious from Table 4 as well. The 

parameters β31 and β41, on the other hand, are almost symmetrical, the former 

having high probability for a value close to zero whereas the latter having 

high probability for a value close to unity (see also Table 4). Moreover, the 

estimated posterior variability is also small in case of β31 with an overall 

impression that the values are clustered around zero (see Figure 1). 

Similarly, the parameters β12 and β32 are skewed with former having positive 

skewness and the latter having negative skewness. The parameters β22 and 

β42, on the other hand, appear to be more or less symmetrical. It is to be 

noted that maximum likelihood estimates can also be considered equally 

well in the situations where estimated posterior densities appear to be more 

or less symmetrical. On the other hand, skewed situations usually 

recommend posterior modes as the appropriate point estimates. 

The density estimates shown in Figures 1-2 along with the estimated interval 

estimates for various regression coefficients provide an impression that at 

least the parameters β21 and β31 may be tested against zero. If such a testing 

results in a conclusion that supports the conjecture to take a value zero for a 

particular parameter, the resulting model is going to be simplified. We may 

then proclaim that we are not losing anything by using a reduced model (say, 

M2 or M3) over the full model (say, M1) where the models M2 and M3 are 

defined after removing the parameter β21 and β31, respectively. In other 

words, we can say that the corresponding biliary acid constituent can be 

considered to have almost no affect in the development of the disease 

(cholelithiasis). This issue may equally well be treated as the problem of 

model comparison where a simplified model may be compared with the full 

model and accordingly the conclusion may be looked upon. 

The complete analysis of the model M2, M3 and the interpretation of the 

estimates of corresponding model parameters can be done similarly as it 

was discussed with the estimated values in Table 4. We,     
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                                β 31                                                                              β 41 

Figure 1: Histogram showing the posterior density estimates of β11, β21, β31 

and β41. 

however, skip this discussion noticing that there is nothing specific to offer 

beyond what has been discussed based on Table 4. The results for the 
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parameters of these models (M2 and M3) were found to be more or less 

similar to those obtained with the corresponding parameters in M1. 

 

5. MODEL COMPATIBILITY AND COMPARISON 
 

The aim of this section is to study compatibility of the full model M1 with the 

considered data set and then to provide a comparison of the full model M1 

with the reduced models M2 and M3. We shall use the informal strategy for 

model compatibility based on predictive simulation ideas briefly discussed 

in Section 3. Our informal approach involves comparing the empirical 

distribution function (Edf) plots corresponding to the observed and the 

predicted data sets obtained from the model under consideration (see (4.1)-

(4.2). 

For our intended purpose, we initially considered the Edf plot corresponding 

to the observed data, shown in Figure 3 in the form of solid line. We next 

considered 25 predictive samples, each of size similar to that of observed 

data. The Edf plots corresponding to predictive data sets are superimposed 

as dotted lines in Figure 3. Although it is an informal approach, it clearly 

provides a message that there is no discrepancy 
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                                  β 32                                                                                       β 42 

Figure 2: Histogram showing the posterior density estimates of β12, β22, β32 

and β42. 

among the observed data based Edf plot and the model based predictive data 

plots. Obviously, the model M1 can be convincingly used for the data in 

hand. 

Results of the comparison of models M1, M2 and M3 are shown in Table 5 in 

the form of BIC, DIC and PBF values (see Section 3). It is obvious that all 

the three values support the reduced models although the extent of support is 

not appreciably enough. Since the parsimony principle also conveys going 

with the simpler model, it is suggested to consider the reduced model in 

spite of the fact that the BIC and the DIC values are quite close to each other 

for the considered models and the PBF value is also seen to be not far away 

from unity. We can, therefore, safely say that the reduced models M2 and M3 

can be recommended for the data in hand and simultaneously the biliary acid 

constituent CDCA and DCA separately do not appear to have an appreciable 

role in the development of cholelithiasis. It is to be noted that result of 

simultaneous testing of β21 and β31 against zero is not given in Table 5 as it 

gave worse model then the full model. 
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Figure 3: Edf plots corresponding to the observed and predictive data sets. 

Table 5: Values of BIC, DIC and PBF corresponding to the models M1, M2 

and M3 

Model BIC DIC PBF 

M1 70.81 41.97 – 

M2 67.26 39.86 0.81 

M3 68.84 39.92 0.85 
 

6. CONCLUSION 

This is an extensive study on multivariate extension of generalized linear 

model to cover the case of polytomous data. The study is exclusively 

Bayesian based on proper vague priors for the parameters involved in the 

model. The novel feature of the study includes the analysis of a real data set 

on the gall bladder patients. As pointed, this study has been considered 

earlier by a number of authors but mostly based on some unrealistic 

assumptions or some simplified tools to avoid statistical complications. Our 

finding reveals that the levels of CA are significantly lower in the 
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cholelithiasis and gallbladder carcinoma group as compared to the control 

group. The two secondary acids, namely DCA and LCA, which are normally 

present in small quantities in bile, are found to be significantly higher in 

concentration in carcinoma patients. Bile constituents CDCA and DCA do 

not have any significant role in developing gallstone. Our analysis, however, 

reveals that the roles of CA and DCA may be considered as possible 

carcinogen. Literature also suggests that the bacterial degradation of primary 

acid is ultimately responsible for the formation of secondary acid which are 

tumor promoters. 
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