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ABSTRACT  

 
 

In this article, we consider the step-stress partially accelerated life tests for 
highly reliable units/components to obtain the failure time observations 
from Generalized Rayleigh distribution under type-II censoring scheme. 
The maximum likelihood estimates of model parameters and acceleration 
factor are carried out by using R software. A Monte Carlo simulation study 
is performed to investigate the precision of the maximum likelihood 
estimates and also to obtain the coverage probabilities of the bootstrap-t 
and percentile bootstrap confidence intervals for the parameters. Finally, 
an example is presented to illustrate both the methods of bootstrap 
confidence intervals.  
 

1. INTRODUCTION 
 

In the Accelerated Life Test (ALT), the test units are subjected to stress 
conditions that are more severe than those encountered in normal use so that 
more failure data can be obtained in a shorter period of time. The failure times 
observed under accelerated conditions are analyzed by selecting an appropriate 
statistical model and then extrapolated to estimate the parameters of the life 
distribution corresponding to the normal use stress condition. Also, instead of 
holding the stress at a constant level throughout the life of a test unit, a most 
commonly used technique in reliability or life testing, called step-stress ALT, is 
the changing the stress setting in different steps at pre-specified times on 
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surviving units. Nelson (1980) firstly introduced the concept of step-stress ALT  
with applications and recently Chandra et al. (2014) gave some more applications 
and attempted the work in this direction.  

In the case of ALT, the acceleration factor is assumed to be known value or there 
is a known mathematical model which specifies the relationship between lifetime 
and stress conditions. But in some situations such life-stress relationship are not 
known and cannot be assumed. Therefore, in such cases, Partially Accelerated 
Life Tests (PALT) is better criterion to perform life test to estimate the 
acceleration factor and parameters of the life distribution. The concept of PALT 
was introduced by Goel (1971) in which a test unit is first run at use condition 
and if it does not fail for a pre-specified time  , the test is switched to the higher 
level of stress for testing until all the unit fails or censoring reached. The effect of 
this switch is to multiply the remaining lifetime of the unit by an unknown factor 
which is called acceleration factor  . Thus, the total lifetime T  of test unit is 

given by 

 1

,

,

Y Y
T

Y Y



   

 
  

                                                 (1) 

where Y  denotes the lifetime of unit at normal use condition. 

Goel (1971) was attempted the parameter estimation problem in step-stress 
PALT by using maximum likelihood (ML) method and Bayesian method when 
the lifetime data follow both exponential and uniform distribution for complete 
data. DeGroot and Goel (1979) studied the problem of estimation for acceleration 
factor and exponential parameters by using Bayesian approach with different loss 
functions for complete data. Bhattcharyya and Soejoeti (1989) also estimated the 
parameters of the Weibull distribution and acceleration factor using ML method 
in step-stress PALT. Bai and Chung (1992) reported ML method for estimating 
the acceleration factor and scale parameter of exponential distribution under 
Type-1 censoring. Bai et al. (1993) present the parameter estimation of the 
lognormal parameters and acceleration factor using ML method under Type-1 
censoring.  

Abdel-Ghally et al. (2002) investigated the maximum likelihood estimates for 
acceleration factor and parameters of the Weibull distribution under Types-I and 
Type-II  censored data. Abd-Elfattah et al. (2008)  attempted  the problem of  
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estimation of the acceleration factor and the parameters of the Burr type XII 
distribution in step-stress PALT using ML method under Type-I censored data.  

Abd-Elfattah and AL-Harbey (2010) studied the estimation problem of the 
parameters of the Burr-III distribution and acceleration factor under Type-II 
censoring. Ismail (2010) obtained the Bayesian estimates as well as ML estimates 
of the Gompertz distribution parameters under SSPALT with type-I censored 
data. Wang et al. (2012) obtained the maximum likelihood estimates of the 
Weibull distribution parameters and acceleration factor under multiply censored 
data. A detail discussion on the most commonly used censoring schemes viz., 
Type-I and Type-II are given by Lawless (2003). 

The rest of the article is organized in the following sequence. In section 2, the 
model description and assumptions of step-stress PALT model are discussed. The 
ML estimation procedure of the model parameters are derived in section 3. 
Section 4 presents the bootstrap confidence intervals. The simulation algorithms 
for constructing bootstrap confidence intervals are given in section 5. In section 
6, the simulation study is presented. Finally, conclusion is presented in section 7. 

2. MODEL DESCRIPTION AND ASSUMPTIONS 

2.1 Model Description 
Let T be a non-negative continuous random variable that follow two parameters 
(α: shape, λ: scale) Generalized Rayleigh (GR) distribution. It is also known as 
Burr-X distribution. Basically, Burr (1942) introduced twelve different forms of 
distributions, named as Burr’s family of life time distributions. Among this 
family Burr-X and Burr-XII are well known due to its flexibility and commonly 
usage in reliability, survival and other important areas. For an excellent review of 
these distributions, the readers are referred to Johnson et al. (1995). A number of 
author’s viz., Sartawi and Abu-Salih (1991), Ahmad et al. (1997), and Surles and 
Padgett (1998) have studied numerous characteristics of the one parameter 

 1  Burr-X distribution. Surles and Padgett (2001) recommended that the 

two-parameter GR distribution (Burr-X distribution) is more suitable in the 
modeling of the stress-strength reliability data. The two-parameter generalized 
Rayleigh distribution is a particular member of the generalized Weibull or 
exponentiated Weibull (EW) that was originally proposed by Mudholkar and 
Srivastava (1993), [see also Mudholkar et al. 1995].  
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The probability density function (p.d.f) of generalized Rayleigh distribution is 
given by 

 
2 2 ( 1)

2 ( ) ( )2 1 ; 0, 0, 0t tf t te e t


   


       
 

               (2)  

and the cumulative distribution function (c.d.f) is given by 
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Its reliability function is given by 
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Fig. 1: The probability density functions of GR distribution for different values 
of shape. 

The hazard rate function of the GR distribution is given by 
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when 1 , then equation (5) becomes, the hazard function of one parameter 
Rayleigh distribution. Mudholkar et al. (1995) observed the hazard rate function  
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of GR(α, λ) is bathtub type for 2/1  and for 2/1 , it has an increasing 
hazard function. Raqab and Kundu (2006) also analyzed the hazard 
characteristics for GR distribution at several possible values of  . They reported 
that, if the data are coming from an environment where the failure rate is 
gradually increasing without any bound, the GR distribution can also be used 
instead of a Weibull distribution. 

2.2 Assumptions in Step-Stress PALT Model 
(i) The failure times niti ,...,2,1,   are independent and identically 

distributed random variables. 
(ii) The total lifetime of test units denoted by T , given in (1) pass through 

two stages that are normal and accelerated conditions. 
Therefore, from (1) and (3) the c.d.f. of total lifetime T  of an item is given by 
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Let  1(t)A t        and
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p.d.f. is given by 
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where,  
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, which is equivalent form to 

equation (2), and      
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obtained by the transformation-variable technique using (1) and (2), with

1; , 0    . 

3. MAXIMUM LIKELIHOOD ESTIMATION AND FISHER 
INFORMATION MATRIX 

This section presents the maximum likelihood estimates of the parameters 
involved in the proposed model and Fisher information matrix.  
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In the case of type-II censored data, the test applied to n identical units will 
terminate when censoring number of failure r is reached. Let un  and an  denote 

the number of failures at normal and accelerated conditions, respectively. Hence, 
the observed values of the total lifetime T  are given by 

(1) ( ) ( 1) ( )... ... ; .
u un n r u at t t t r n n          

Therefore, the likelihood function under type-II censoring can be written as 

   1 2
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Obviously, it is easier to maximize the natural logarithm of the likelihood 
function than the likelihood function. Therefore, the log-likelihood function is 
given by   

   

 

    

2
2

1 1

2 2 2 2
1 1

1 1 1

2 2
1

log log 2 log(t ) ( 1) log 1

log (t ) (t ) log

( 1) log (t ) ( ) log 1 (t )

u u
i

u

u u

u

n n
t

i
i i

n r r

i i i a
i i n i n

r

i r
i n

L r e

t A A n

A n r A





 

  





 

    

 

 
     

 

   

    

 

  



      (10) 

The maximum likelihood estimates (MLEs) of , and     are the solution of 

the following system of equations 
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Since this is system of non-linear equations and do not admit explicit solutions, 
so optim() function is used to solve these equations numerically via R software to 

obtain  ˆ andˆ,ˆ . The asymptotic variance-covariance matrix of the MLEs can 

be obtained by numerically inverting the asymptotic Fisher Information matrix. It 
is composed of the negative second partially derivatives of log-likelihood 
function evaluated at MLEs, is given as 

2 2 2
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The elements of the above Fisher Information matrix are derived in the 
Appendix. 

4. CONFIDENCE INTERVALS 

In this section, we present two bootstrap methods to construct confidence 

intervals (CI) for the unknown parameters , and    , viz., bootstrap-t CI 

(BTCI) suggested by Hall (1988) and percentile bootstrap CI (PBCI) suggested 
by Efron (1982). 

4.1 Bootstrap-t Confidence Interval 

First, find the order statistic ][*]1[* *
... m

ll TT   by using the data given in step 8 

of subsection 5.1, where 
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Next, consider all possible 100(1-γ)% CIs of the form 
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and choose the interval for which the width is minimum,  ** , lUlL TT . 

A two-sided 100(1-γ)% BTCI for l  is either 
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where,  1̂Var  is estimated as the asymptotic variance, obtained from the type-

II censored sample. 

4.2 Percentile Bootstrap Confidence Interval 

First, consider all 100(1-γ)% CIs of the form 

3,2,1,,...2,1,ˆ,ˆ *])1[(*][* *
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h
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by using the bootstrap sample given in step 8 of subsection 5.1. 

And then choose the interval with minimum width, say  ** ˆ,ˆ lUlL  . 

A two-sided 100(1-γ)% PBCI for l is either 
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5. SIMULATION PROCEDURES 

In this section the following algorithms are used for simulating the failure 

lifetime data and for obtaining the MLEs of parameters ) and,(   and study 

the performance of their estimates through the mean squared errors (MSEs) and 
relative absolute biases (RABs) as: 

1. First we assumed the initial values of the parameters   and, . 
2. Simulate n order statistics from the Uniform (0, 1) distribution, 

nnnn UUU ::2:1 ,...,, . 

3. For a given value of pre-specified switching time  , find 1n  such that 

   nnnn UU :1
2

: 11
)(exp1 


 . 

4. For a given value of censoring number  nr 85.0 , find 2n  such that

12 nrn  . 

5. From step 3 and 4, the order failure times, 

rnnnnn tttt   ...... :1::1 11
are calculated as follows 
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6. From rnnn ,,,, 21  and ordered failure times nit :  given in step 5, we 

can obtain the MLEs   ˆ,ˆ,ˆ  by directly maximizing the log-likelihood 
given in (3.3) through R software. 

7. Repeat steps 2-6 for m(1000) times representing m different samples. 
8. If lk̂ is a MLE of 3,2,1, ll  (where   is a general notation that can 

be replaced by   and,  i.e.    321 ,, , based on 

sample mkk ,...,2,1,  , then the average estimate, MSE and RAB of l̂  

over the m samples are given respectively, by 
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9. From step 8 compute 




  ˆ,ˆ,ˆ  and also compute  ̂MSE ,  ̂MSE , 

 ̂MSE ,  ̂RAB ,  ̂RAB ,  ̂RAB  by using above formulas. 

5.1 Algorithm for Bootstrap Confidence Intervals 

In this subsection, we describe the algorithm to obtain the bootstrap sample. 
Then, we use this bootstrap sample for constructing the bootstrap confidence 
intervals. The following steps are followed to obtain a bootstrap sample 

1. From the original type-II censored sample, 

rnnnnn tttt   ...... :1::1 11
, obtain   ˆandˆ,ˆ . 

2. Simulate *n order statistics from the Uniform (0, 1) distribution, 
*

:
*
:1 *** ,...,

nnn
UU . 

3. For a given value of pre-specified switching time  , find *
1n  such that 

   *
:1

ˆ2*
: **

1
**

1
)ˆ(exp1

nnnn
UU





  

4. For a given value of censoring number  ** 85.0 nr  , find *
2n such that 
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6. From ****
2

*
1 ,,,, rnnn  and ordered failure times given in step 5, we can 

obtain the MLEs  *** ˆandˆ,ˆ   by directly maximizing the log-

likelihood given in (10) through R software. The value of *m  has been 
taken to be equal m . 

7. Repeat the above steps *m  times representing *m  different samples. The 

value of *m  has been taken to be 500. 
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8. Arrange all the values of *** ˆandˆ,ˆ   in an ascending order to obtain 

the bootstrap sample ,3,2,1,ˆ,...,ˆ,ˆ ][*]2[*]1[* *









lm

lll 

 **
3

**
2

**
1 ,,where   . 

6. SIMULATION STUDY 
 

In this section, we present the results of Monte Carlo simulation study carried out 
in order to compare the performance of two sets of initial values of the 
parameters. The values of the parameters in two sets are arbitrary chosen to be 
α=0.50, λ=1.65 and β=1.25 for first set and α=0.50, λ=1.35 and β=1.30 for 
second set. The value of stress changing time τ is 0.50 and the pre-specified 
censoring number r=0.85n (n=70, 100, 150, 200). Numerical results are tabulated 
in Table 1-3 shown in Appendix, based on m=1000 repetitions. Table-1 presents 
the average value of MLEs, MSEs and RABs of α, λ and β for different sample 
sizes.  
 

The Table-2 shows the 95% coverage probabilities for BTCIs and PBCIs of α, λ 
and β based on 1000 Monte Carlo simulations (m=1000) and 500 bootstrap 
replications (m*=500). 

6.1 An example 

Here, we present an example to illustrate the estimation procedure and the two 
bootstrap CI methods for two sets of the parameters α, λ and β. In this example, 
we simulate a sample of size n=50, using the same algorithm given in section 5, 
based on two set of initial value of the parameters; α=0.50, λ=1.65 and β=1.25 
for first set and α=0.50, λ=1.35 and β=1.30 for second set. The stress changing 
time τ and pre-specified censoring number r are taken to be equal 0.50 and 0.85n, 
respectively. The simulated failure time data are given in Table-3, while the 
MLEs, MSEs and RABs of the parameters are given in Table-4, under type-II 
censoring. Using two bootstrap CIs derived in section 4.1 and 4.2. Table-5 shows 
95% bootstrap CIs for the parameters α, λ and β.  

Table 1: MLEs of ( , , )  
 

 with their MSEs and RABs for different sample 

sizes with r=0.85n censoring based on 1000 simulations. 
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n 
Param
eters 

α=0.50, λ=1.65, β=1.25, 
τ=0.50 

α=0.50, λ=1.35, β=1.30, 
τ=0.50 

MLEs MSEs RABs MLEs MSEs RABs 

70 
α 
λ 
β 

0.5342 
1.7460 
1.4855 

0.0095 
0.0730 
2.7665 

0.0684 
0.0582 
0.1884 

0.5375 
1.4363 
1.3600 

0.0107 
0.0617 
0.1921 

0.0750 
0.0639 
0.0462 

100 
α 
λ 
β 

0.5079 
1.6588 
1.3663 

0.0048 
0.0432 
0.1941 

0.0159 
0.0053 
0.0930 

0.5166 
1.3721 
1.3588 

0.0058 
0.0381 
0.1297 

0.0333 
0.0163 
0.0452 

150 
α 
λ 
β 

0.5163 
1.6991 
1.3123 

0.0037 
0.0302 
0.1130 

0.0325 
0.0297 
0.0498 

0.5157 
1.3863 
1.3272 

0.0041 
0.0265 
0.0787 

0.0313 
0.0269 
0.0209 

200 
α 
λ 
β 

0.5036 
1.6549 
1.2976 

0.0025 
0.0211 
0.0788 

0.0072 
0.0030 
0.0381 

0.5054 
1.3575 
1.3286 

0.0028 
0.0175 
0.0579 

0.0108 
0.0056 
0.0220 

Table 2: Estimated coverage probability (in %) of bootstrap-t and percentile 
bootstrap CIs for (α, λ, β) based on 1000 simulations and 500 replications with 
95% CI. 

n 
Parame 
ters 

α=0.50, λ=1.65, β=1.25, 
τ=0.50 

α=0.50, λ=1.35, β=1.30, 
τ=0.50 

BTCI PBCI BTCI PBCI 

70 
α 
λ 
β 

97.80 
99.00 
91.10 

97.20 
98.70 

100.00 

99.60 
98.90 
99.90 

96.80 
98.70 
99.30 

100 
α 
λ 
β 

98.90 
96.70 
97.60 

92.80 
100.00 
99.60 

97.60 
97.50 

100.00 

77.10 
95.70 

100.00 

150 
α 
λ 
β 

98.00 
98.40 
97.50 

91.50 
96.30 
98.00 

98.40 
97.00 

100.00 

77.10 
99.10 

100.00 

200 
α 
λ 
β 

99.20 
98.70 
99.80 

85.50 
98.70 
99.80 

100.00 
99.20 
99.30 

86.60 
100.00 
100.00 

Table 3: The ordered failure time data form step-stress partially accelerated life 
test model with n=50, τ=0.50 and censoring r=0.85n.  

True 
values 

Use conditions  Accelerated 
conditions 

α=0.50 
λ=1.65 

0.003, 0.048, 0.069, 0.080, 0.082, 0.103, 
0.109, 0.116, 0.119, 0.144, 0.146, 0.153, 

0.512, 0.521, 
0.548, 0.578, 
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β=1.25 0.162, 0.167, 0.168, 0.169, 0.170, 0.203, 
0.218, 0.242, 0.251, 0.304, 0.314, 0.321, 
0.359, 0.391, 0.404, 0.405, 0.406, 0.415, 
0.416, 0.430, 0.452, 0.469, 0.498 

0.582, 0.586, 
0.588 

α=0.50 
λ=1.35 
β=1.30 

0.009, 0.038, 0.104, 0.105, 0.109, 0.112, 
0.115, 0.125, 0.136, 0.160, 0.169, 0.173, 
0.183, 0.184, 0.219, 0.238, 0.254, 0.255, 
0.269, 0.272, 0.311, 0.315, 0.322, 0.340, 
0.359, 0.381, 0.407, 0.411, 0.417, 0.419, 
0.427, 0.439, 0.448, 0.461 

0.503, 0.522, 
0.538, 0.540, 
0.547, 0.555, 
0.565,     0.692 

Table 4: MLEs of ( , , )  
 

 with their MSEs and RABs for n=50 with r=0.85n 

censoring. 

Parame
ters 

α=0.50, λ=1.65, β=1.25, τ=0.50 α=0.50, λ=1.35, β=1.30, τ=0.50 
MLEs MSEs RABs MLEs MSEs RABs 

α 
λ 
β 

0.5941 
1.9532 
1.2999 

0.0192 
0.1616 
0.4978 

0.1882 
0.1837 
0.0400 

0.5814 
1.5481 
1.3636 

0.0147 
0.0931 
0.3563 

0.1628 
0.1468 
0.0490 

Table 5: Bootstrap-t CIs and percentile bootstrap CIs of based on 500 
replications for n=50 with r=0.85n and 95% CI. 

Parame
ters 

α=0.50, λ=1.65, β=1.25, τ=0.50 α=0.50, λ=1.35, β=1.30, τ=0.50 
BTCI BTCI BTCI PBCI 

α 
λ 
β 

(0.397, 1.012) 
(1.473, 3.022) 
(0.054, 11.62) 

(0.475,0.623) 
(0.783,2.173) 
(0.594,1.721) 

(0.384, 1.107) 
(0.983, 2.359) 
(0.084, 4.929) 

(0.501, 0.712) 
(0.989, 2.174) 
(-0.215,  4.21) 

From the results of the Table-4, it is observed that the second set have good 
statistical properties. It can be also observed from the Table-5 that the BTCIs are 
narrower than the PBCIs and always include the population parameter values. 

7. CONCLUSION 

In life testing experiment, it is very difficult to continue the test of highly reliable 
units. So, ALT is recommended to aid estimating the reliability of the unit in a 
short period of time. But, the main assumption in ALT is that the relationship 
between the mean lifetime and the stress is known. On the other hand, in the case 
of the modern products with very intricate technology, it is impossible to know or 
to expect this relationship relating the lifetime of a unit to the stress. 
Consequently, in such cases, PALT is the apt procedure of accelerating life tests 
to be applied where PALT does not assume that this relationship is known. 
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In this article, the maximum likelihood method is used for estimating the 
acceleration factor and the parameters of the Generalized Rayleigh distribution 
under type-II censored data. The mean square error, relative absolute bias and 
bootstrap (bootstrap-t and percentile bootstrap) confidence intervals are 
considered. Simulation study with an illustrative example is given.  

The concluded remarks on the proposed study are given below: 

From results of Table-1 we observe the following: 

1. The second set of the population parameters have good statistical 
properties than first set of the population parameters for all sample sizes. 

2. As the sample size increases the MSEs and RABs of the estimated 
parameters decreases and MLEs also approaches nearer to true values of 
the population parameters. 

3. This indicates that the maximum likelihood estimates provide 
asymptotically normally distributed and consistent estimators for the 
parameters and acceleration factor. 

From Table-2 we observe the following: 

It is observed that for both the sets of the population parameter value the 
coverage probabilities of the two considered bootstrap methods almost 
better as expected except for some few cases. It is also seen that CPBTs 
are better than CPPBs as Hall (1988) suggested.  

As future work, this study can be extended to explore the situation under 
different censoring schemes like as: type-I, progressive type-I, progressive type-
II. 
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APPENDIX 

Second partial derivatives of log-likelihood function 
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Fig. 2: The coverage probabilities of bootstrap-t and percentile bootstrap are 
shown in 1(a), 1(b), 1(c) and 1(f), 1(g), 1(h), respectively for n=70 under first set 
of initial values. 

 

 
Fig. 3: The coverage probabilities of bootstrap-t and percentile bootstrap are 
shown in 2(a), 2(b), 2(c) and 2(f), 2(g), 2(h), respectively for n=100 under first 
set of initial values. 
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Fig. 4: The coverage probabilities of bootstrap-t and percentile bootstrap are 
shown in 3(a), 3(b), 3(c) and 3(f), 3(g), 3(h), respectively for n=150 under first 
set of initial values. 

 

 
Fig. 5: The coverage probabilities of bootstrap-t and percentile bootstrap are 
shown in 4(a), 4(b), 4(c) and 4(f), 4(g), 4(h), respectively for n=200 under first 
set of initial values. 

 

 
Fig. 6: The coverage probabilities of bootstrap-t and percentile bootstrap are 
shown in 5(a), 5(b), 5(c) and 5(f), 5(g), 5(h), respectively for n=70 under second 
set of initial values. 
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Fig. 7: The coverage probabilities of bootstrap-t and percentile bootstrap are 
shown in 6(a), 6(b), 6(c) and 6(f), 6(g), 6(h), respectively for n=100 under second 
set of initial values. 

 

 
Fig. 8: The coverage probabilities of bootstrap-t and percentile bootstrap are 
shown in 7(a), 7(b), 7(c) and 7(f), 7(g), 7(h), respectively for n=150 under second 
set of initial values. 
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Fig. 9: The coverage probabilities of bootstrap-t and percentile bootstrap are 
shown in 8(a), 8(b), 8(c) and 8(f), 8(g), 8(h), respectively for n=200 under second 
set of initial values. 

 
 
 
 
 


