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ESTIMATION FOR DOMAINS IN STRATIFIED SAMPLING DESIGN 

IN THE PRESENCE OF NONRESPONSE 

E. P. Clement, G. A. Udofia and Ekaette I. Enang       

ABSTRACT 

An analytical approach for finding the best sampling design subject to a 
cost constraint is developed. We consider stratified random sampling 
design when elements of the inclusion probabilities are not equal but are in 
same stratum and proposed estimators of totals for domains of study under 
non-response in the context of calibration estimation. We derived optimum 
stratum sample sizes for a given set of unit costs for the sample design and 
compared empirically the relative performances of the proposed 
calibration estimators with a corresponding global estimator. Analysis and 
evaluation are presented. 

1.    INTRODUCTION 

In sample survey, separate estimates of a parameter may be required for 
subpopulations into which a population is divided without separately sampling 
from these subpopulations.  Such subpopulations are called domains of study 
(Hidiroglou and Patak 2006). The method of estimating the domain parameters is 
called domain estimation.  
Yates (1953) first considered in detail some of the problems associated with the 
estimation of domain totals, means and proportions in the case of a single-stage 
simple random sampling. He noted that the variance of an estimator of a domain 
parameter is increased by the fact that the number of the domain elements, and 
hence the number of those elements that can fall in a random sample of a fixed 
size, is unknown before the start of the survey. Hartley (1959) gave a derivation 
of Yates’ results in multi-stage sampling. Hartley’s paper (1959) is one of the 
first attempts to unify the theory of domain estimation. Hartley provided the 
theory for a number of sample designs where domain estimation was of interest. 
His paper mostly discussed estimations that did not make use of auxiliary 
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information. He did, however, consider the case of ratio estimation where 
population totals were known for the domains. 
Udofia (2002) extended Yates’ results to double sampling for probability 
proportional to size (PPS) when information on the size, X, of each sampling unit 
is unknown. 
Torabi, Datta and Rao (2009) proposed an empirical Bayes estimation of domain 
means under nested error linear regression model with measurement errors in the 
covariates. 
The problem of allocation of resources when domains of study are of primary 
interest is discussed by Cochran (1977).  
However, despite these vast extensions of Yates results, the phenomenon of non-
response and its problems in domain estimation have not been addressed. 
In many human surveys, information is in most cases not obtained from all the 
units in the survey even after some call-backs. An estimate obtained from such 
incomplete data may be misleading especially when the respondents differ from 
the non-respondents because the estimate can be biased. 
Non-response always exists when surveying human populations as people 
hesitate to respond in surveys; and increases notably while studying sensitive 
issues like family size as in a case of survey of fishing communities in Umon 
Island, Nigeria undertaken in 1993. Non-response as an aspect in almost every 
type of sample survey creates problems for estimation which cannot simply be 
eliminated by increasing sample size. 
The phenomenon of non-response in a sample survey reduces the precision of 
parameters estimates and increases bias in estimates resulting in larger mean 
square error, thus ultimately reducing their efficiency. 
An important technique to address these problems is by calibration. Calibration 
as a tool for reweighting for non-response was first introduced by Deville and 
Sarndal (1992) for the estimation of finite population characteristics like means, 
ratios and totals. This calibration approach requires the formulation of suitable 
auxiliary variables. The calibration approach provides a unified treatment of the 
use of auxiliary information in surveys with non-response. In the presence of 
powerful auxiliary information, the calibration approach meets the objectives of 
reducing both the sampling error and the non-response error. This article is an 
attempt to extend Yates’ results to stratified sampling design for domain 
estimation in the presence of non-response.   
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2.  SAMPLE DESIGN AND ESTIMATION  

2.1 Domain Characteristics 
      Consider the finite population under study U  of size N  divided into D  

domains; DUUU ...,,, 21 of sizes DNNN ...,,, 21  respectively. Domain 

membership of any population unit is unknown before sampling. It is assumed 

that domains are quite large. Following from Gamrot (2006), for a typical thd  

domain dU  several characteristics may be defined including the domain total: 
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In this article the estimation of domain totals is considered. 
2.2 Domain Estimation by Calibration 
The technique of estimation by calibration is based on the idea to use auxiliary 
information to obtain a better estimate of a population statistic. Consider a finite 

population U  of size N with unites labels 1,2,...,N. Let   Nkyk ,...,2,1, =  be the 

study variable and Nkxk ,...,2,1, = be the k-dimensional vector of auxiliary 

variables associated with unit k. 

Suppose we are interested in estimating the domain total ∑=
dU

dkd yY . We draw a 

sample { } dUns ∈= ,...,2,1  using a probability sampling design P, with 

probability P(s), where the first and second order inclusion probabilities 

are )( skPk ∈=π and ),( slkPkl ∈=π respectively. 

An estimate of dY is the Horvitz-Thompson (HT) estimator 
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∑=
s

dkkdHT ydŶ               (5) 

where 
k

kd
π
1= is the sampling weight defined as the inverse of the inclusion 

probability kπ  for unit k . 

      An attractive property of the HT-estimator is that it is guaranteed to be 
unbiased regardless of the sampling design P (Horvitz and Thompson 1952). It 
variance under P is given as: 
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Suppose there are Nkxk ,...,2,1, = auxiliary variables at unit k and 

Nnk xxxx ,...,,...,1=
 may or may not be known a priori. ∑=

s
dkd xX is the 

domain total for X, and is known a priori. Ideally, we would like  

∑=
s

dkkd xdX̂               (7) 

but often times this is not true. 

The idea behind calibration estimation is to find weights nkwk ,...,2,1, =  close 

to kd based on a distance function such that 

∑ ∑==
s U

dkdkkwd
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Expression (8) is the calibration constraint. We wish to find weights kw similar 

to kd  so as to preserve the unbiased property of the HT-estimator. Once kw  is 

found, then our propose calibration estimator for wdY , is: 

∑=
S

dkkwd ywY ,
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Where kkk gdw = . 

Thus    ∑=
S

dkkkdw ygdŶ
            (10) 

This can be written in regression form as:  

ddwddHTwd XXYY β̂)ˆˆ(ˆˆ
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where  
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2.3 Sample Design for The Calibration Estimator 

Consider a stratified random sampling design with H strata and such that hn  

elements are considered fromhN  in stratum Hhh ,...,2,1, = . Then, the design 

weights needed for the point estimation are 
h

h
k n

N
d = for all k in 

stratum hNkh ,...,2,1, = . However, the design weights kld  needed for the 

variance estimation if lk ≠  and both k and l are in stratum h is: 
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2.4 Optimal Sample Allocation 

We shall now deduce the optimum ,),( optnn h that minimize the variances of 

the proposed calibration estimators for a specified cost, or that minimize the cost 
for a specified variance. 
Let us consider the simple linear sampling cost function of the form: 

∑
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where 0c is the overhead cost and hc  is the cost per unit of obtaining the 

necessary information in h-th stratum. We shall consider the following allocation 
methods in this article, namely: 

(i) Optimum allocation 

Using the cost function of (18), ∑
=

+=
H

h
hhnccC

1
0 , we have corresponding 

lagrangian as follows: 
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The partial derivatives of (19) with respect to hn and λ  are respectively: 
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substituting (20) into (21) and solving forλ , we obtain 
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Finally to obtain a solution for , we substitute for λ into (20) as follows: 
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(ii) Neyman allocation 

If the cost per unit is the same across strata (that is, Hhcch ,...,2,1, ==  ) then; 
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(iii) Optimal power allocation 

Let the loss function according to Bankier (1988) be 
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The partial derivatives of (24) with respect to hn and λ  are respectively: 
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substituting (25) into (26) and solving forλ  we obtain 
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Finally to obtain a solution for , we substitute for λ into (25) to obtain: 
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(iv) Neyman power allocation 

If the cost per unit is the same across strata, then; 
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(v) Square  root allocation 

 If the value of the power of the allocation is set to one-half (i.e. 0.5) then 
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(vi) Neyman square root allocation 
If the cost per unit is the same across strata, and the value of the power of 
allocation is set to one-half, then, we obtain  
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3. DATA ANALYSIS AND DISCUSSION 

3.1 Background and Analytical Set-Up 
The data used is obtained from the 2005 socio-economic household survey of 
Akwa Ibom State conducted by the ministry of economic development, Uyo, 
Akwa Ibom State, Nigeria. 
The study variable, y, represents the household expenditure on food and auxiliary 
variable, x, represents the household income. The statistic of interest is the total 
cost of food for household and its corresponding estimator for male and female 
heads of household. 
The population of household heads was stratified into two strata that constitute 
the domains; as the male household heads and the female household heads 
respectively. For the population of individual household heads, we want a 
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separate estimates for male and female household heads defined as two domains 
of the population.  The number of the male household heads and female 
household heads in the survey are known. We used the calibration estimator for 

the domain total 2,1,ˆ
, =dY wd and the following formulation is specified: The 

number of male household heads, 1N and female household heads, 2N  are 

known and the auxiliary vector has two possible values; namely, T
kx )0,1(= for 

all male household heads and T
kx )0,1(= for all female household heads. The 

population total of the auxiliary vector kx  is ( )TNN 21,  which is also known and 

1=kq  for all .k  

An assisting model of the form hhh exy ++= 10 ββ  was designed for the 

calibration estimators, where h is the number of strata (domains) and he  are 

independently generated by the standard normal distribution.   
3.2 The Sampling Design Variance Estimation 

To obtain an optimum value of  that minimizes the design variance ),ˆ( ,wdP YV  

a population was generated with the following parameters: 

5711.0,3262.0,3.0,5.0,4.0,100,500 1
2
1210 ======= SSccccC  

6577.0,4326.0;949,8;553,1;396,7,7670.0 2
2
221 ====== SSNNNρ  

Table 1 shows the summary of values ofhn for the six allocation criteria. The 

variance for the calibration estimator using the optimum values of hn from the six 

different allocation criteria are presented in Table 2. 

Table 1: Optimum Value of hn  

Stratum OA NA OPA NPA SRA NSRA 
1 674 805 770 952 737 900 
2 210 195 50 48 105 100 

Total 884 1,000 820 1,000 842 1,000 

  
Table 2: Optimum Variance  

Allocation Method Stratum 1 Stratum 2 Total 

Optimum Allocation 18,452.5381 3,293.2926 21,745.8307 

Neyman Allocation 15,148.6151 3,586.2351 18,734.8502 

Optimum Power Allocation 15,921.2883 15,479.701 31,400.9895 
Neyman Power Allocation 12,523.7988 16,146.145 28,669.9442 
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Square Root Allocation 16,717.0263 7,101.5452 23,818.5715 
Neyman Square Root Allocation 13,354.2962 7,482.3705 20,836.6667 

 
The variance estimator from the stratified random sampling design is: 

h

h
hh

H

h
hwdP n

S
nNNYV

2

1
, )()1()ˆ( −−=∑

=

ρ  

where 2,1=h  and 7670.0=xyρ  and 2
hS  is the stratum variance of the 

residuals dke where .ˆ
d

T
kdkdk xye β−=   

The optimum value of hn for the Neyman allocation gave the minimum variance 

sought. The results of the design variance estimation are presented in table 3. 
 
Table 3: Variance Estimation  
Stratum 

hN  hn  hh nN −  ( )ρ1−hN  2
hS  ( )
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)(1 −− ρ  

1. 7,396 805 6,591 5,671.9650 0.3262 15,148.6151 
2. 1,553 195 1,358 1,190.3840 0.4326 3,586.2351 

Total 8,949     18,734.8502 

 
3.3 Comparison with Global Estimator 
To compare the performance of each estimator we use the following criteria; bias 
(B), relative bias (RB), mean square error (MSE), average length of confidence 
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where )(
,,

ˆ m
wdUY and )(

,,
ˆ m

wdLY are the upper and lower confidence limit of the 

corresponding confidence interval. 
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Coverage probability of 95% confidence interval is the ratio of the number of 
times the true domain total is included in the interval to the total number of runs 
or the number of replicates.  

For each estimator of wdY ,
ˆ , a 95% confidence interval )ˆ,ˆ( ,,,, wdUwdU YY  is 

constructed, where 
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The analytical study was conducted using the R-statistical package. There were 
M=2,500 runs in total. For the m-th run (m=1, 2,…, M), a Bernoulli sample is 
drawn where each unit is selected into the sample independently, with inclusion 

probability 
h

h
k n

N
=π where 2,1=h . Following the results of analysis for 

optimum stratum sample sizes, we fixed 8051 =n  and 1952 =n and the 

corresponding calibration estimators of the domain totals were computed. For 

simplicity, the tuning parameter kq was set to unity( )1=kq . 

For each estimator of wdY ,
ˆ , a 95% confidence interval ( )wdUwdL YY ,,,,

ˆ,ˆ  is 

constructed, where wdLY ,,
ˆ is the lower confidence limit, and wdUY ,,

ˆ is the upper 

confidence limit.The results of the analysis are given in Table 4. 

  Table 4: Comparison of Estimators from Analytical Study 
Estimator B RB MSE AL CP 

GREGdY ,
ˆ  0.0096 0.0632 5896 1283.50 0.982 

wdY ,
ˆ  0.0074 0.0132 2587 823.23 0.768 
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4. DISCUSSION 

An assisting model of the form hhhi exy ++= 10 ββ  where h is the number of 

strata (domains) and )N(0,~ 2
eh

σhe . The results of the residual diagnostics 

showed the R2 value as 0.588 indicating that the model is significant and that the 
calibration estimators are unbiased with respect to the sampling design. The 
correlation between the study variable y and the auxiliary variable x 

is 7670.0=xyρ  is strong and sufficient implying that the calibration estimators 

would provide better estimates of the domain totals.  
 The Neyman allocation criterion provides the optimum stratum sample 

sizes 805,1 =optn  and 195,2 =optn  that minimized the variance of the calibration 

estimators as reflected in table 2.  
 

 The design strata estimates are 15,148.6151 and 3,586.2351 for stratum 1 and 
stratum 2 respectively. Similarly, the variance estimate is 18,734.8502. 
Following from the above estimates, we deduced that the design strata estimates 
are minimized when the elements of the inclusion probability are not equal but 
are in the same stratum under calibration approach to domain estimation. We also 
deduced that design strata estimates sum up to the finite population estimates.  
 

 Analysis for the comparison of performance of estimators showed that the biases 
of 0.74 percent and 0.96 percent respectively for the calibration estimator and the 
GREG-estimator are negligible. But the bias of the GREG-estimator though 
negligible is the most biased among the estimators considered.  
 

The relative bias for the calibration estimator is relatively smaller than that of the 
GREG-estimator. The variance for the GREG-estimator is significantly larger 
than the variance of the calibration estimators, as is indicated by their respective 
mean square errors in table 4. The average length of the confidence interval for 
the calibration estimator is significantly smaller than that of the GREG-estimator. 
The coverage probability of the calibration estimator is also smaller than that of 
the GREG-estimator. These results showed that there is greater variation in the 
estimates made by the GREG-estimator than the calibration estimator.  
 

In general, the calibration estimator is more efficient than the GREG-estimator 
and the variance reduction is about 50 percent which is consistent with theory as 
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is reflected by the high population correlation between the study variable   and 
the auxiliary variable . 
 

5. CONCLUDING REMARKS 

In calibration estimation the common practice is to generate artificial 
population(s) for simulation study and assign samples to the said population(s) 
by proxy. We have demonstrated the use of analytical approaches to allocate 
optimal samples to subpopulations by conducting real data analysis. We 
recommend analytical approaches for allocation of optimal samples to 
population(s) or subpopulation(s) through real data analysis as this guarantee the 
applicability of the proposed estimator(s) to real life situation(s). That is, focus 
should be on assessing the applicability of the proposed estimator(s) to real life 
situation(s) through real data analysis rather than on assessing the performance of 
the proposed estimator(s) against a given estimator(s) through simulation study. 
Though both cases, could be investigated as it is demonstrated in this article. 

6. CONCLUSIONS 

Calibration estimation for finite population by Deville and Sarndal (1992) is 
extended to domain estimation in the context of stratified random sampling 
design.  We proposed calibration estimator based on the stratified random 
sampling design in the presence of non-response. The calibration assumption of 
reliant on implicit linear relationship between the study variable, and the 
auxiliary variable  is retained for the domain estimation. 
 

The problem of optimal allocation of sample sizes for domain estimation has 
received less attention than merited in the statistical sample survey theory 
literature. This article equally addressed this problem especially when it is 
feasible to select sample in every domain and we used the stratified random 
sampling design (STRS) where domains constitute strata in the sampling design 
to obtain optimal stratum sample sizes. Six optimal allocation criteria were 
considered, namely; optimum allocation, Neyman allocation, optimal power 
allocation, Neyman power allocation, square root allocation and Neyman square 
root allocation.   Analysis showed that among this class of optimal allocation 
criteria, the Neyman allocation provided the optimal stratum sample sizes that 
minimized the variance of our proposed calibration estimator.  
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The efficacy of our proposed calibration estimator was tested through a real data 
analysis. Five performance criteria, namely; bias (B), relative bias (RB), mean 
square error (MSE), average length of confidence interval (AL) and coverage 
probability (CP) were used to compare the relative performances of our proposed 
calibration estimator against the traditional GREG-estimator. Results of the 
analytical study using real data showed that our proposed calibration estimator is 
substantially superior to the traditional GREG-estimator with relatively small 
bias, mean square error and average length of confidence interval. 
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