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ABSTRACT 

In this article, we estimate the shape and scale parameters, Lorenz curve 

and Gini-index for the power function distribution using quasi-likelihood 

and quasi-Bayesian methods. Quasi-Bayes estimators have been developed 

under squared error loss function as well as under LINEX loss function. 

We demonstrate the use of the proposed estimation procedure with the U. 

S. income data for the period 1913-2010. Our proposed quasi-likelihood 

and quasi-Bayesian estimators are compared with the ML estimators 

proposed by Belzunce et al. (1998).  

1. INTRODUCTION 

The Lorenz curve is a graphical representation, usually adopted to depict the 

distribution of income and wealth in a population. Let X be a continuous non-

negative random variable representing income of a society or community with 

distribution function F(x), Gastwirth (1971) defined the Lorenz curve 

corresponding to X as 

 
 

   
0

1
du, 0 1, ,

p

L p Q u p E X
E X

      (1) 

where Q(u) is the quantile function. Clearly L(p) gives the fraction of total 

income that the holders of the lowest p
th
 fraction of income possesses. Most of 

the measures of income inequality are derived from the Lorenz curve. An 

important measure of inequality is the Gini-index associated with F and is 

defined by  

  
1

1 2 dp.
o

G L p               (2) 

This is a ratio of the area between the Lorenz curve and the 45
0
 line to the area 

under the 45
0
 line. In general, these notions are useful for measuring 
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concentration and inequality in the distributions of resources and in size 

distributions. For the applications of Lorenz curve and Gini-index we refer to 

Moothathu (1985, 1990) and the references therein. These measures have also 

been found applications in reliability theory. For more details, see Chandra and 

Singpurwalla (1981), Sathar et al. (2007) and Sathar and Nair (2009). 

Moothathu (1991) has derived uniformly minimum variance unbiased estimators 

of Lorenz curve and Gini-index for lognormal and Pareto distributions 

respectively. Sathar et al. (2005), Sathar and Suresh (2006) and Sathar and 

Jeevanand (2009) have discussed the Bayesian estimation of Lorenz curve and 

Gini-index of the Pareto and exponential distributions respectively. For recent 

works on the estimation of Lorenz curve and Gini-index, we refer to Hasegawa 

and Kozumi (2003), Rohde (2009), Sarabia et al. (2010), Fellman (2012) and the 

references therein.  

In many cases of practical work in economics and social sciences, models are 

approximates of the true data generation process. Such an approximate model is 

often misspecified or only partially correct. A useful approach in this case is the 

quasi maximum likelihood method studied by Huber (1967) and White (1982), 

among others that generalize the traditional maximum likelihood (ML) method to 

the case of possible model misspecification. An important extension proposed by 

Wedderburn (1974) is the quasi-likelihood function, which requires assumptions 

on the first two moments only, rather than the entire distribution of the data. The 

quasi-likelihood approach is useful because in many situations the exact 

distribution of the observations is unknown. Moreover, a quasi-likelihood 

function has statistical properties similar to those of a log-likelihood function. 

For recent works on quasi-likelihood estimation, we refer to Annis (2007), Kim 

(2014), Elshahat and Ismail (2014) and the references therein. The present paper 

focuses attention on estimating the parameters, Lorenz curve and Gini-index for 

power function distribution using quasi-likelihood and quasi-Bayesian 

estimation. 

The present article is organized as follows. In Section 2, we consider the model 

and quasi-likelihood estimates of the shape and scale parameters, Lorenz curve 

and Gini-index of the power distribution. Section 3 deals with the quasi-Bayesian 

estimation of the parameters, Lorenz curve and Gini-index of the power 

distribution when both scale and shape parameters of the distribution are 

unknown. In Section 4, we demonstrate the use of the proposed estimation 
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procedure with the U. S. income data for the period 1913-2010. Based on a 

Monte Carlo simulation study, comparisons are made between the proposed 

estimators and ML estimators and are presented in Section 5. We utilize Section 

6 for some concluding remarks and for the description of the summary of the 

results developed in this work. 

2. THE MODEL AND QUASI-LIKELIHOOD ESTIMATES 

Among the models which provide a better fit to the whole income “distribution, 

there”. are the Singh-Maddala model and the Dagum Model Type-I (Dagum, 

1980). Belzunce et al. (1998) observed that for low values of the parameters of 

Singh-Maddala distribution, the right residual income follows, asymptotically, 

the power function distribution. Therefore in the study of poverty, it is important 

to consider the estimation of the Lorenz curve and the Gini index for this model. 

Let  , 1,2,...,iX i n be a sequence of independent and identically distributed 

random variables from a power function distribution with pdf 

 
 1

, , , 0 , , 0,f x x
x


 

    


 

 
    

 
      (3) 

where   and   are scale and shape parameters, respectively. The Lorenz curve 

and the Gini-index for (3) can be simplified respectively as 

  
11 , 0 1,L p p         (4) 

and      
1

1 2 .G 


               (5) 

Bagchi and Sarkar (1986) discussed the Bayes interval estimation for the shape 

parameter of the power distribution. For recent works on estimation of the 

parameters of the power function distribution, we refer to Sinha et al. (2008), 

Sultan et al. (2014) and the references therein. 

Belzunce et al. (1998) obtained the ML estimates of the parameters α, β, the 

Lorenz curve and the Gini-index and are given respectively as 
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2.1 Quasi-Likelihood Estimation 

In this section, we derived the maximum quasi-likelihood estimates for the 

unknown parameters of the power function distribution. The quasi-likelihood 
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function was introduced by Wedderburn (1974) to be used for estimating the 

unknown parameters in generalized linear models when only the mean-variance 

relationship is specified. Wedderburn defined the quasi-likelihood function as 

 
 

 , dμ ,
x

Q x o x
V









       (7) 

where  ,E x      V Var x   and  o x  is some function of x only. The 

variance assumption is generalized to    ,Var x V  where the variance 

function  .V  is assumed to be known and the parameter   may be unknown. 

The quasi-likelihood function has properties similar to those of the log-likelihood 

function. For a sample  1 2, ,..., nx x x x  of size n from (3), the quasi-likelihood 

function simplifies to 

 
1

1
, , log , where .

1

n n

i

i

Q x v v x
 

 
  

  
    

 
   (8) 

The natural exponent of  , ,Q x   is the likelihood function and is given as 

 
 11

| , exp .

n
v

l x


 
 

   
   
   

    (9) 

Using (9), the maximum quasi-likelihood estimates of the parameters   and 

, denoted by ˆ
MQL  and ˆ ,MQL and are simplified respectively as 

ˆ ,MQL

v

n v






      (10) 

and       
 1ˆ .MQL v

n







            (11) 

The maximum quasi-likelihood estimators for the Lorenz curve and Gini-index, 

denoted by ˆ
MQLL  and ˆ

MQLG  can be obtained from (4) and (5) after replacing   

and  by ˆ
MQL  and ˆ ,MQL  respectively. 

3. QUASI-BAYESIAN ESTIMATION 

Recently, the Bayesian approach has received large attention for analyzing 

statistical data and has been often proposed as a valid alternative to traditional 

statistical perspectives. The Bayesian approach allows prior subjective 

knowledge on parameters to be incorporated into the inferential procedure. 
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Hence, Bayesian methods usually require less sample data to achieve the same 

quality of inferences than methods based on sampling theory, which becomes 

extremely important in case of expensive testing procedures. 

 

Bayesian statistics provide a conceptually simple process for updating 

uncertainty in the light of evidence. From a decision-theoretic view point, in 

order to select the ‘best’ estimator, a loss function must be specified and is used 

to represent a penalty associated with each of the possible estimates. 

Nonetheless, it has been observed that in certain situations when one loss is the 

true loss function, Bayes estimate under another loss function performs better 

than the Bayes estimate under the true loss. Therefore, we consider symmetric as 

well as asymmetric loss functions for getting better understanding in our 

Bayesian analysis. 

Squared error loss function (SELF) is a commonly used loss function and is 

defined as 

   
2

ˆ ˆ, ,L       

which is a symmetrical loss function that assigns equal losses to over estimation 

and underestimation. The Bayes estimator under the above loss function is the 

posterior mean given by  

 |
ˆ ,BS xE       (12) 

and the posterior expected loss of θ, denoted by  ˆ, BSR    under the SELF is the 

posterior variance of θ and is given by 

              
22

| |
ˆ, .BS x xR E E             (13) 

The SELF is a frequently used symmetric loss function, because it does not lead 

to extensive numerical computation. No doubt, the use of squared error loss 

function is well justified when the loss is symmetric in nature. Its use is also very 

popular, perhaps, because of its mathematical simplicity. 

In most situations of interest, overestimating is more harmful than 

underestimating. Due to this, we use the linear exponential (LINEX) loss 

function (LLF), the most frequently used asymmetric loss function. The LLF is 

introduced by Varian (1975) in response to the criticisms of SELF function and is 

defined by 



                                                                                       Sathar et al. 

66 

 

     
ˆ

ˆ ˆ, 1 , 0, 0,
a

L b e a a b
 

   
      

  
   (14) 

where a and b are the shape and scale parameters of the loss function (14). 

Obviously, the nature of LINEX loss function changes according to the choice of 

a, and assume, in what follows, that 1b  in (14). It is to be noted as a tends to 

zero, the LINEX loss is approximately squared error loss and therefore almost 

symmetric. Writing  | |

t

x xM t E e 

 
     for the moment generating function of 

the posterior distribution of θ, it is easy to verify that the value of ̂  that 

minimizes  |
ˆ,xE L   

 
 in (14) is 

   | |

1 1ˆ ln ln ,a

BL x xM a E e
a a



   
   
 

  (15) 

provided  | .xM  exists and is finite. The posterior expected loss of θ, denoted by 

 ˆ, BLR   under the LLF is given by 

     | |
ˆ, ln .a

BL x xR E e aE

     
 

    (16) 

Zellner (1986) discussed the Bayesian estimation and prediction using LLF. For 

recent works on the Bayes estimation using LLF, we refer to Pandey and Rao 

(2009), Ahmadi et al. (2010) and the references therein. 

3.1 Estimation When ,  And ,  Unknown 

The most general and perhaps a more realistic situation is when both the shape 

and scale parameters of the distribution are unknown. In this section, we attend 

the problem of estimation of , ,  L and G when   and   are unknown. In 

Bayesian inference, a prior probability distribution, often called simply the prior, 

of an uncertain parameter θ or latent variable is a probability distribution that 

expresses uncertainty about θ before the data are taken into account. The 

parameters of a prior distribution are called hyper-parameters, to distinguish 

them from the parameters    of the model. The Bayesian deduction requires 

appropriate choice of priors for the parameters. Arnold and Press (1983) pointed 

out that, from a strict Bayesian viewpoint, there is clearly no way in which one 

can say that one prior is better than any other. Presumably one has one’s own 

subjective prior and must live with all of its lumps and bumps. But if we have 

enough information about the parameters then it is better to make use of the 

informative prior which may certainly be preferred over all other choices. 
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Here we suggest the joint conjugate prior distribution for the parameters and is 

given by 

 
 

2, .
r

rg e
r


    


     (17) 

Combining (2.7) and (3.6), the joint posterior density is obtained as 
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nr
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v
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     (18) 

From (18) integrating out  , the marginal posterior density of   is obtained as 
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where       
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              (20) 

with 1,M r n      0max ,
n

X   and    1 2max , , , .nn
X X X X K  The 

symbol C with various suffixes stands for the normalizing constants. Similarly, 

the marginal posterior density of   is obtained as 
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where      
 1
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0 0

1
1 exp dαdβ.
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          (22) 

Let the Lorenz curve L(p) be a parameter itself and denote it by L for simplicity. 

Replacing   in (19) in terms of L by that (4), we get the posterior density of the 

Lorenz curve as 
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where   
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with             
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L
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Now we derive posterior distribution for the Gini-index under this situation. Let 

the Gini-index G be a parameter itself. Replacing   in (19) in terms of G by that 

of (5), we get the posterior distribution of Gini-index as 
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where      
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with            
1

.
2

G

G
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In the following theorems, we derived the quasi-Bayes estimators of ,  ,  L 

and G using SELF and LLF. The proofs are straight forward using (12), (13), 

(15) and (16) and also using the posterior densities (19), (21), (23) and (25). 

Theorem 1: For the power function distribution (3), the quasi-Bayes estimator 

and the posterior risk of  under SELF are given by 
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where  1C d  is given in (20). 

Theorem 2: For the power function distribution (3), the quasi-Bayes estimator 

and the posterior risk of  under SELF are given by 
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    (28) 

where  2C d  is given in (22). 

Theorem 3: For the power function distribution (3), the quasi-Bayes estimator 

and the posterior risk of L under SELF are given by 
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where  3 ,C p d  is given in (24). 

Theorem 4: For the power function distribution (4), the quasi-Bayes estimator 

and the posterior risk of L under SELF are given by 
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    (30) 

where  4C d  is given in (26). 

Theorem 5: For the power function distribution (3), the quasi-Bayes estimator 

and the posterior risk of  under LLF are given by 
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given in (20). 

Theorem 6: For the power function distribution (3), the quasi-Bayes estimator 

and the posterior risk of  under LLF are given by 
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where 
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Theorem 7: For the power function distribution (3), the quasi-Bayes estimator 

and the posterior risk of L under LLF are given by 

     

 

 
 

 

3

3

3

3

1 1ˆ ln | ln ,

,1
ˆ, ln ,

,0

a L

QBL

QBL

L E e x B
a a

C p
R L L B a

C p

 
  
 

 

                       (33) 

where        

   

 

1

0 0

3

3

11
exp dβdL

,0

M np

L LL
L

L

A A vA
A aL

L A
B

C p




 


   
    

   


 
  

and  3 ,C p d  is given in (24). 

Theorem 8: For the power function distribution (3), the quasi-Bayes estimator 

and the posterior risk of G under LLF are given by 
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and  4C d  is given in (26). 

It may be noted here that the quasi-Bayes estimators of Lorenz curve and Gini 

index under both loss functions are not reducible in nice closed form; however, 

we propose to use 16-point Gaussian quadrature formulas for their evaluation.  

4. A NUMERICAL EXAMPLE 

To illustrate the usefulness of the proposed estimators obtained in sections 2 and 

3 with real situations, we considered here the real data-set reported by Saez 

(2012) representing the average income of United States for the period 1913-
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2010 (Table 1). We fit the power function distribution to the right proportional 

residual income of this data. For finding the right residual income, we choose the 

limit as 50,000. The fit seems to be quite well. (Anderson-Darling statistic = 

2.4762, p-value = 0.0511). For this model, using MLE, the estimated parameters 

are   = 1.57 and   = 0.9966. We use the value p = 0.5, for evaluating the 

estimates of Lorenz curve and choose   = 0.9966. 

Table 1: Estimates for U. S. income data  

 MLE MQL QBS QBL 

  1.5700 1.4377 1.5651 (0.2757) 1.5709 (0.1526) 

  1.0034 0.9622 1.1053  (0.0143) 1.0989  (0.0064) 

L 0.3215 0.3087 0.3220  (0.0023) 0.3208 (0.0012) 

G 0.2415 0.2580 0.2406  (0.0039) 0.2387 (0.0020) 

Based on this data, we evaluate and present the proposed estimates and the 

posterior risks (in parenthesis) of , ,  L and G in table 1. It is clear from table 

1 that the performance of the Lorenz curve and Gini-index estimators using 

SELF and LLF are more or less similar. Obviously, we do not expect much to 

conclude from this analysis, perhaps or we are capable to show that the proposed 

estimators can be easily obtained in the practical situations. 

5. MONTE CARLO SIMULATION 

In order to assess the performance of the estimators obtained in sections 2 and 3, 

we present here a simulation study. All the programmes were written using the 

Mathematica 7 package. Simulation study has been done according to the 

following steps. 

Step-1: Generate a sample of size n = 50, 100 and 200 from (3) with   = 0.5, 

1.0, 1.5 and   = 1.0, 1.5, 2.0. For the simulation study, we choose the value of a 

= 0.8, the LINEX shape parameter and set p = 0.5. 

Step-2: For the vector  ,r   of hyper parameters, calculate the estimates of ,  

,  L and G by using the estimators obtained in sections 2 and 3. 

Step-3: Repeat steps 1 and 2, 1000 times and calculate the mean value for the 

estimates. The Bayes estimates and the posterior risks (in parenthesis) for each 

estimates using quasi-Bayesian estimation and the mean for ML and MQL 

estimates are tabulated in tables 2-5. 
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Table 2: Estimates of   

n   ˆ
MLE  ˆ

MQL  ˆ
QBS  ˆ

QBL  

50 

 

0.5 0.51682 0.48384 0.50705 (0.01171) 0.50243 (0.00370) 

1.0 1.06180 0.99299 1.03324 (0.03492) 1.01955 (0.01095) 

1.5 1.50047 1.47526 1.53916 (0.05749) 1.51665 (0.01801) 

100 

 

0.5 0.53790 0.52059 0.52356 (0.00881) 0.52006 (0.00280) 

1.0 1.04262 1.02429 1.00366 (0.02864) 0.99238 (0.00902) 

1.5 1.49315 1.47747 1.50081 (0.05103) 1.48080 (0.01601) 

200 

 

0.5 0.50987 0.52156 0.49696 (0.00554) 0.49474 (0.00178) 

1.0 1.03006 1.04194 0.97853 (0.02218) 0.96973 (0.00704) 

1.5 1.47029 1.45029 1.53730 (0.04427) 1.51990 (0.01392) 

Table 3: Estimates of   

n   ˆ
MLE  ˆ

MQL  ˆ
QBS  ˆ

QBL  

50 1.0 0.98229 1.00532 1.06800 (0.00430) 1.06633 (0.00133) 

 1.5 1.46924 1.47739 1.59736 (0.00889) 1.59396 (0.00272) 

 2.0 1.98184 1.99767 2.13274 (0.01641) 2.12656 (0.00494) 

100 1.0 0.99348 0.99794 1.03568 (0.00121) 1.03520 (0.00038) 

 1.5 1.49289 1.50433 1.55421 (0.00278) 1.55313 (0.00087) 

 2.0 1.98330 2.08057 2.07764 (0.00559) 2.07549 (0.00173) 

200 1.0 0.99557 1.00722 1.02183 (0.00048) 1.02163 (0.00015) 

 1.5 1.49193 1.47899 1.53213 (0.00107) 1.53172 (0.00033) 

 2.0 1.99494 2.00497 2.04354 (0.00193) 2.04278 (0.00060) 

Table 4: Estimates of L 

n   True L ˆ
MLEL  ˆ

MQLL  ˆ
QBSL  ˆ

QBLL  

50 0.5 0.125 0.13026 0.11913 0.12506 (0.00128) 0.12455 (0.00041) 

 1.0 0.250 0.25704 0.24597 0.25185 (0.00097) 0.25147 (0.00031) 

 1.5 0.315 0.31306 0.30954 0.31598 (0.00052) 0.31577 (0.00017) 

100 0.5 0.125 0.13724 0.13059 0.13066 (0.00093) 0.13029 (0.00030) 

 1.0 0.250 0.25600 0.25252 0.24723 (0.00086) 0.24689 (0.00027) 

 1.5 0.315 0.31284 0.31073 0.31245 (0.00049) 0.31226 (0.00016) 

200 0.5 0.125 0.12817 0.13192 0.12260 (0.00065) 0.12234 (0.00021) 

 1.0 0.250 0.25419 0.25635 0.24345 (0.00072) 0.24316 (0.00023) 

 1.5 0.315 0.31153 0.30948 0.31638 (0.00039) 0.31623 (0.00013) 
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Table 5: Estimates of G 

n   True G 
ˆ

MLEG  
ˆ

MQLG  ˆ
QBSG  ˆ

QBLG  

50 0.5 0.500 0.49290 0.50878 0.50228 (0.00282) 0.50116 (0.00090) 

 

1.0 0.333 0.32436 0.33858 0.33107 (0.00161) 0.33043 (0.00051) 

 

1.5 0.250 0.25242 0.25692 0.24864 (0.00086) 0.24829 (0.00027) 

100 0.5 0.500 0.48303 0.49307 0.49385 (0.00197) 0.49306 (0.00063) 

 

1.0 0.333 0.32567 0.33015 0.33702 (0.00143) 0.33645 (0.00045) 

 

1.5 0.250 0.25271 0.25542 0.25318 (0.00082) 0.25286 (0.00026) 

200 0.5 0.500 0.49567 0.49046 0.50495 (0.00145) 0.50437 (0.00046) 

 

1.0 0.333 0.32798 0.32521 0.34187 (0.00120) 0.34139 (0.00038) 

 

1.5 0.250 0.25443 0.25706 0.24813 (0.00065) 0.24787 (0.00021) 

 

6. CONCLUSION 

The present paper proposes quasi-Bayesian approaches to estimate , ,  L and 

G of power function distribution. The estimators are obtained using both 

symmetric and asymmetric loss functions. Comparisons are made between the 

different estimators based on a simulation study and practical example using a set 

of real data set. The effect of symmetric and asymmetric loss functions was 

examined and the following were observed: 

1. From Tables 2-5, we can conclude that, as we increase the sample size, the 

posterior risks for the quasi-Bayes estimates decreases. 

2. When we consider smaller values for the LLF shape parameter a, we get more 

or less similar means for the quasi-Bayes estimates for both squared error and 

LINEX loss functions, but the posterior risks are different.  

3. Our proposed estimates using quasi-likelihood techniques performs better 

than the ML estimates. 
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