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CHARACTERIZATIONS OF THE PARETO DISTRIBUTION IN THE 

PRESENCE OF OUTLIERS 

U. J. Dixit and M. Jabbari Nooghabi 

ABSTRACT 

Here we have given some characterizations for the Pareto distribution in the 
presence of outliers. It is proved that a necessary and sufficient condition for 

)(xf to be a Pareto density function in the presence of outliers is that the 

statistics )(rX  and )1(
)(

)(
nsr

rx

sx ≤<≤ are independent. Further, we have 

derived some another characterizations of the Pareto distribution in the 
presence of outliers.  

1.  INTRODUCTION 

Ahsanullah and Kabir (1973) proved that necessary and sufficient condition for 

)(xf to be a Pareto distribution is that the statistics)(rX and )1(
)(

)(
nsr

rX

sX ≤<≤  

are independent. Dallas (1976) proved that for a cumulative distribution function 

(CDF) )(yG β≥y , if
r

r Yc
EcYYE 








=>

β
)|( holds then Y  has a Pareto 

distribution. 

In this paper, we assume that the random variables nXXX ,...,, 21 are such that k  of 

them are distributed with probability density function (pdf) 

0,1,0,,
)(

),,;(
12 >>>≤<= + θβαβθαβθααβα α x

x
xf                                             (1) 

 and the remaining )( kn −  random variables are distributed as  

0,0,),;(
11 >≤<= + αθαθθα α

α

x
x

xf                                                                            (2) 

One should note that sets of the observation (i.e. k  and kn − ) are independent. 

But nXXX ,...,, 21  are not independent because of the model of outliers (for more 

details see Dixit (1989), Dixit and Jabbari Nooghabi (2011a) and Dixit and Jabbari 
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Nooghabi (2011b). Also, we may note that our assumptions are based on Dixit’s 
model for the outliers problem and it is totaly different than the mixture models 

which considers nXXX ,...,, 21 are independent. 

Here, we have extended the approaches of Ahsanullah and Kabir (1973) and Dallas 
(1976) for the homogenous case of the Pareto distribution and derived some 
characterizations of thePareto distribution in the presence of outliers. 

2.  PREREQUISITE RESULTS 

Assume that ( ) ( ) ( )nXXX ,...,, 21 <  be the order statistics of a random sample of size n  

such that k  out of n are coming from pdf 2f  (or CDF 2F ) and the remaining 

kn − follow the pdf 1f  (or CDF 1F ). The CDF and pdf of )1( nrr th ≤≤ order 

statistic are  
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where ),0max(5 knim +−=  and ),min(6 ikm =   and  
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where ),0max(1 nrkm −+= , )1,1min(2 −−= rkm , ),0max(3 nrkm −+= , 

)1,min(4 −= rkm , respectively (for more details see Dixit (1987, 1989, 1994) and 

Dixit and Jabbari Nooghabi (2011b)). 
Further, the joint CDF and pdf of )1(,( )()( nsrXX sr ≤<≤ are  
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where; )1,0max(9 knw +−= , ),min(10 ikw = , ),0max(9 mknjt −+−=    

            )1,min(10 −−= jmkt and                                                                                                      
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where )1,0max(1 −+−= knrw , )1,2min(2 −−= rkw , )1,0max(1 −−+−= jrskt

and ),2min(2 snjkt −−−= , )1,0max(3 −−= krw , )1,2min(4 −−−−= rjknw ,   

)1,0max(3 −−+−−= jrksnt and ),2min(4 snjknt −−−−= ,

),0max(5 krw −= , )1,1min(6 −−−= rknw , )1,0max(5 −−+−−= jrksnt

),1min(6 snjjrknt −−−−−= , ),0max(7 knrw +−= , )1,1min(8 −−= rkw ,

)1,0max(7 −−+−= jrskt , ),1min(8 snjkt −−−= , respectively.  

One should note that if k=1 the joint pdf of )()( , sr XX   is given in Sinha (1973). 

Also, if we put 21 ff =   and 21 FF =   then all pdfs and CDFs are reduced to 

homogeneous cases. 
The following equations are named as Pexider’s equations. 

),()()( yhxgxyf +=
                                                                                   

(7) 

and 
),()()( yhxgxyf =

                                                                                      
(8) 

For solving these equations, the following Theorem has taken from Aczel (1966) 
(Theorem 4. in p. 144) and Kuczma (2008) (Theorem 13.3.4. in p. 358).   
 
Theorem 2.1. The general solutions, with f continuous in a point, of (7)and (8), 
respectively, both supposed for positive x and y, are  

)0,0(),ln()(),ln()(),ln()( >>=== ttcthtctgtctf αβααβ                       (9) 

 and  

)0(,)(,)(,)( >=== tbtthattgabttf ccc                                                                (10) 
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respectively, supplemented with the following trivial solutions in case of (8).  
)0,0(),ln()(),ln()(),ln()( >>=== ttcthtctgtctf αβααβ  
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arbitraryth

tg

tf

                                                     

(11) 

3. CHARACTERIZATION OF THE PARETO DISTRIBUTION 
IN THE PRESENCE OF OUTLIERS 

 
Theorem 3.1. Let X be a random variable having an absolutely continuous CDF 

)(xF . A necessary and sufficient condition that X follows the Pareto distribution in 

the presence of outliers as given by (1) and (2) is that for somer and 

)1( nsrs ≤<≤ the statistics )(rX and 
)(

)(

r

s

X

X
are independent. 

Proof. Necessity: From (6) we can get the joint pdf of )(rX and )(sX  Substituting 

)(rXU = and 
)(

)(

r

s

X

X
V =  in (6), we can obtain the joint pdf of U and V as  

).,(),(
)(,)(, uvuuhvuh

sXrXVU =  

Then after some simplification  
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where 
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Therefore, it establishes the independence of U and V. 
Sufficiency: Here we assume that U and V  are independent. The joint pdf of U 

              and V is  
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where ,,, 321 AAA and 4A are given in (13). 

By using some elementary algebra we have  
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Also from (4) and after some simplification, the marginal pdf of )(rXU = is as 
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Therefore from independency of U and V, we can write 
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where )(2 vh  is pdf of V. 
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From the assumption, we know that U and V are independent. So )(2 vh is 

independent of u and by using the lemma in Ahsanullah and Kabir (1973) 

)(),( 1 vgvupp ==  and )(),( 2 vgvuqq ==  (we say functions of v only) and the 

remaining parts should be constant. Therefore  
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It is clear that these are version of Pexider’s equation. So from Theorem 2.1 we can 

solve them. Since )(1 xF and )(2 xF are CDFs continuous for all ),[ ∞∈ θx and 
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 Where 21,cc and α are constant. 

After replacing these solutions in (19) and using some simplification we get  
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We know that 0),( =jnC if ,nj > then by using some elementary algebra  
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and it is pdf of V.

 

Finally, from the property of CDF, αθα => 1,0 c  and ( )αβθ=2c . Thus sufficiency 

is established and the proof is complete. 
 

Theorem 3.2. Let X be a random variable with CDF )()()( 12 xFbxbFxF += such 

that )()(1 θ≥xxF and )()(2 βθ≥xxF  are CDFs, where 0,1, >−== θbb
n

k
b and 

1>β . If 
αα

α

θβθ







+






=> Xc
Eb

Xc
bEcXXE 12)|(                                                              (23) 

holds for some 0>α then )(xF is the Pareto distribution in the presence of outliers. 

We assume that .)( ∞<αXE  

Proof. Proof is similar as given in Dallas (1976). In the process to prove the 
theorem, we should note that the solution of the differential equation 

))(1)(()()(' cFcPcPccP −=−= γ is α−= AccP )( , where A is a constant,  

0)1/( >−= δαδγ  and  

∫∫
∞∞








+






=
θ

αα

βθ θβθ
δ ).()( 12 xdF

X
bxdF

X
b                                                                  (24) 

Comparing the solution with the assumption imply that αα θβθ bbA += )( and the 

proof is complete. 
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4.  AN ACTUAL EXAMPLE 

Here, we have given an example of motor insurance company from Dixit and 
Jabbari Nooghabi (2011a). From the example, we know that the data follow the 
Pareto distribution in the presence of outliers. So by using Theorem 3.1, we can 
check the sufficiency. Assuming 123 == sandr , we have 63000)( =rx and 

857.2
)(

)( =
r

s

x

x
. So, using the copula method and independent test by package 'copula' 

in R, the result is as follows: 
Global Cramer-von Mises statistic: 0.03125 with p-value 0.9950495 
Combined p-values from the Mobius decomposition: 
0.9950495  from Fisher's rule, 
0.9950495  from Tippett's rule. 

Therefore, )(rX and 
)(

)(

r

s

X

X
 are independent, because of the p-value is grater than 

0.05, as significant level of the test. So, we can conclude that the data follow the 
Pareto distribution in the presence of outliers. 
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