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ABSTRACT  

The paper deals with the stochastic analysis of a k-out-of-n:G 
trichotomous system with load sharing. When any of the n components 
fails due to open mode failure, the entire load is distributed among the 
remaining (n-1) components and the system operates with increased failure 
rate of each operating component i.e. the entire load is shared by the 
remaining components. This process remains continued till we have k 
good components. The system may also break down when all the 
components fail due to some common cause or there is a close mode 
failure in any component during its operation. The various reliability and 
cost effectiveness measures useful to system designers have been obtained 
by supplementary variable technique. The Classical and Bayesian 
estimates have been obtained for reliability and other characteristics. 
Monte Carlo Simulation technique is used to derive the posterior 
distribution for steady state availability and MTSF in a 2-out-of-3:G 
system. 

1. INTRODUCTION 

Redundancy is one of the methods to enhance the reliability and other measures 
of system effectiveness and can be achieved by duplicacy of components or units 
in the system. There may be various forms of redundancy such as active, passive, 
element/component redundancy. A common form of redundancy may be 
considered in a k-out-of-n:G system in which at least k out of n components must 
work satisfactorily for the successful operation of the system so that (n-k) 
components work as redundant. However an n-component system that fails if and 
only if at least k out of n components fail is called a k-out-of-n:F system. Thus a 
k-out-of-n:G system is equivalent to an (n-k+1)-out-of-n:F system. Such type of 
configuration is very popular in fault tolerant systems which include the multi-
display system in a cockpit, the multi-engine system in an airplane and the multi-
pump system in a hydraulic control system. For example, in a multi-stranded (20-
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25 strands)  electric wire system the current will pass if at-least few of them (5-7 
strands) are good; Similarly to drive a car with V8 engine at least four cylinders 
are necessary to fire and it will not be driven if less than four cylinders fire. Thus, 
functioning of engine may be represented by a 4-out-of-8:G system. Thus in real 
world we find numerous applications of k-out-of-n: G system model. Several 
examples of k- out-of-n:G system are available in Kuo and Zuo (2003), Gurler 
and Bainomov (2009). 

Besides these, another important systems existing in real life are Trichotomous 
systems (Balaguruswamy (1984)) consisting of a number of components/units 
that can fail in two mutually exclusive modes-open and close. Most of the 
electronic goods such as diode circuits, thryristor convertor, and capacitor banks 
are examples of trichotomous systems. For instance, in an electrical system 
having components connected in series, if a short circuit occurs in one of the 
components, then short circuited component will not operate but permits the flow 
of current through the remaining components so that they continue to operate. 
However an open circuit failure of any of the components will cause an open 
mode failure of the system. On the other hand, if the components are connected 
in parallel, a short circuit will cause failure of all the components and the system 
breaks down whereas an open circuit failure of any of the components does not 
cause others to fail. Gupta et. al. (1992, 1996) first time introduced the concept of 
trichotomous systems in analyzing k-out-of-n system and parallel system models 
by using supplementary variable technique.  

In most cases, while analyzing parallel or k-out-of-n system, it has been assumed 
that failure of one of the components doesn’t affect the failure of remaining 
components i.e. lifetimes of components working in parallel or k-out-of-n system 
configuration are assumed to be independent. However in real existing systems 
the situation arises where failure of any of the components of the system affects 
the lifetimes of the remaining components. This aspect may be interpreted in 
terms of load sharing concept. In load sharing systems if a component fails the 
entire workload has to be shared by surviving components resulting in the 
increased load shared by the surviving components. For example, in a power 
plant, we have electric generators arranged in parallel which can share the 
electric load if any or many of these generators fail. Mostly increased load 
induces a higher component failure rate. Many empirical studies by Kapur and 
Lamberson (1997) and Lui (1998) of mechanical systems and computer systems 
have proved that workload strongly affects the component failure rate. 



Classical and Bayesian Stochastic analysis…trichotomous system 

3 

As the life testing experiments are time consuming , therefore the parameters 
involved in lifetime distribution can’t be a fixed constant up to a long time and 
behave like a random variable represented by a prior distribution. In past, many 
authors have considered the Bayesian study (Martz and Waller (1982), Berger 
(1985) and Box and Tiao (1992)) that incorporates prior knowledge of the system 
parameters based on past experience with similar reliability data and this prior 
knowledge can be put mathematically in the form of suitable prior density. 
Yadavalli et al. (2005) presented Bayesian analysis in a two component system 
with common cause shock failure by considering prior distributions on the 
parameters of exponential failure and repair patterns. Their Bayesian study 
focuses on steady state availability of two different configurations (series and 
parallel). Lee, Ke and Hsu (2008, 2009) treated the Bayesian analysis for the 
repairable standby systems with imperfect coverage and imperfect switching with 
reboot delay. But so far no study has been done considering a trichotomous k-
out-of-n: G system model with the concept of load sharing and Bayesian 
estimation of parameters.  

In view of the above considerations, the present study introduces the concept of 
load sharing in a k-out-of-n:G trichotomous system in which each component 
may fail due to operation or due to impact of some common cause. Further, due 
to operation a unit may fail in any of the two mutually exclusive modes –open 
mode and close mode. The repair is carried out only when the system breaks 
down i.e. does not work at all and each repair makes the system as good as new. 
Due to open mode failure, the failed unit does not operate but remaining (n-1) 
units operate with increased failure rate due to load sharing. The failure rates of 
the components at each time are taken to be constant whereas all repair rates are 
general. The analysis of system model under study has been carried out by 
supplementary variable technique to evaluate following characteristics: point-
wise and steady state availabilities of the system, expected up-time of the system 
in (0,t) and in steady state; reliability and Mean Time To System Failure 
(MTSF), expected busy period of the repairman in (0,t) and in steady state and 
net expected profit earned by the system in (0,t) and in steady state. The results 
are also obtained in a particular case of 2-out-of-3:G system when the repair time 
distributions are exponential with different parameters. 

Conceptualizing the above model, simulation study is presented for analyzing the 
2-out-of-3:G system model in classical and Bayesian setup. Monte Carlo 
Simulation Technique is used for numerical study. In classical setup maximum 
likelihood estimators of the parameters involved in the model and reliability 
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characteristics along with their standard error and confidence interval have been 
obtained. In Bayesian approach, Bayes estimates of parameters and reliability 
characteristics along with their posterior standard error (PSE) and Highest 
Posterior Density (HPD) intervals have been computed.  
Thus the purpose of the present study is twofold: one is to evaluate the various 
measures of reliability and cost effectiveness by using supplementary variable 
technique and other is to evaluate classical and Bayesian estimates of parameters 
involved in the model and reliability characteristics in a 2-out-of-3 :G system. 
Monte Carlo Simulation technique is used to prepare the tables regarding the 
MTSF, posterior mean and HPD intervals for steady state availability and MTSF 
as well as estimates of MTSF and A (∞). 

2. MODEL DESCRIPTION AND ASSUMPTIONS 

Initially the system comprises of n good components that form a parallel 
network. Each component may fail due to operation or due to impact of random 
shock. Also a component may fail in any of the two mutually exclusive modes 
(open and close). The close mode failure in a component is defined as failure due 
to short circuit in the component. Due to short circuit failure in any of the 
component, the system breaks down whereas due to open mode failure in any of 
the component, the failed component does not operate but the system still 
operates with remaining (n-1) components with increased failure rate of each of 
the components owing to the concept of load sharing. This process goes on until 
we have k good component in the system. The repair is carried out only when 
system breaks down and each repair makes the system as good as new. All 
failure time distributions are taken to be exponential while repair time 
distributions as general. 

3. NOTATIONS AND STATES OF THE SYSTEM 

jλ   : Constant failure rate of each component when j components  

( )j j 1−λ < λ            are operative in the   system. ( )j n,n 1,...,k= −  

β  : Constant close mode failure rate of the component 

ccλ   : Constant failure rate of the system due to common cause 

( ) ( )x ,g xη  : Repair rate and corresponding pdf of repair time when the 

system breaks down due to close mode failure in a component, 
so that 



Classical and Bayesian Stochastic analysis…trichotomous system 

5 

 ( ) ( ) ( )
x

0

g x x exp u du
 

= η − η 
  
∫

 
( ) ( )x ,q xµ  :  Repair rate and corresponding pdf of repair time when the    

system breaks down due to open mode failure in the 
components, so that 

 ( ) ( ) ( )
x

0

q x x exp u du
 

= µ − µ 
  
∫

 
( ) ( )x ,h xθ  :  Repair rate and corresponding pdf of repair time when the 

system breaks down due to common cause failure in a 
component, so that 

 ( ) ( ) ( )
x

0

h x x exp u du
 

= θ − θ 
  
∫

 
( )wP t   :  P[system is in state wS at time t] ; ( )w 0,1,2,...., n k 3 .= − +  
( )mQ x, t dx  :  P[system is in state mS at time t and has sojourned in this state 

for duration ( ) ( ) ( ) ( )x, x d x ; m n k 1 , n k 2 , n k 3 .+ = − + − + − +  

, s∗  :†Symbols   for  Laplace  Transform  

i.e. ( ) ( ) ( ) ( )*
k k kP s L.T P t exp st P t dt= = −   ∫  

The possible states of the system are  

iS  : Operative state of the system with the operation of 

( )n i− components; ( )i 0,1,2,...., n k .= −  

n k 1S − +  : Failed state of the system when ( )n k 1− + components have 

failed one by one due to open mode failure 

n k 2S − +  : Failed state of the system due to closed mode failure in the 

components. 

n k 3S − +  : Failed state of the system when the system breaks down due to 

common cause failure. 

 The transition diagram of the system model is shown in fig 1 where 0S  to n kS −          

 are up states and remaining n k 1 n k 2 n k 3S , S , S− + − + − +  are the failed states. 
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                                                                                                      Fig1. TRANSITION DIAGRAM 

 

                       (((( ))))xθθθθ   n k 3S − +− +− +− +  

 

  

                           ccλλλλ              ccλλλλ                            ccλλλλ                ccλλλλ  

 

       0S         1S                                                                                                                            

                        nnλλλλ                          (((( )))) n 1n 1 −−−−− λ− λ− λ− λ                                                                                kk λλλλ    

         

       

     (((( ))))xµµµµ  

                nββββ   (((( ))))n 1− β− β− β− β             (((( ))))n 2− β− β− β− β           kββββ  

                            

 

                                                                                     

    (((( ))))xηηηη  

                                                                         

            (((( ))))xµµµµ             

      
(((( ))))k 1−−−−  

Open mode 
Failure 

Common Cause 
Failure 

Closed Mode 
Failure 

n  n 2−−−−
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4. BASIC EQUATIONS AND THEIR LAPLACE TRANSFORM 

Probabilistic considerations and limiting procedure yield the following integro-
differential equations 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

n cc 0 n k 1 n k 2

n k 3

d
n P t Q x, t x dx Q x, t x dx

dt

Q x, t x dx

− + − +

− +

 + λ + β + λ = µ + η  

+ θ

∫ ∫

∫
           (1) 

( ) ( ) ( )n i cc i n i 1 i 1
d

(n i) P t (n i 1) P t ; i 1,2,.....(n k)
dt − − + −
 + − λ + β + λ = − + λ = −            

(2) 

 ( )n k 1(x) Q x, t 0
x t − +
∂ ∂ + + µ = ∂ ∂ 

                        (3) 

       ( )n k 2(x) Q x, t 0
x t − +
∂ ∂ + + η = ∂ ∂ 

                      (4) 

       
( )n k 3(x) Q x, t 0

x t − +
∂ ∂ + + θ = ∂ ∂ 

         (5) 

Boundary conditions are 

 ( ) ( )n k 1 k n kQ 0, t k P t− + −= λ                 (6) 

The limits of integration are not mentioned whenever they are 0 to∞  
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 ( ) ( ) ( )
n k

n k 2 j
j 0

Q 0, t n j P t
−

− +
=

= − β∑                     (7) 

 ( ) ( )
n k

n k 3 cc j
j 0

Q 0, t P t
−

− +
=

= λ ∑                                                                  (8) 

It is assumed that the system is initially in normal state 0S i.e. 

( ) ( )0 w n k 1 n k 2 n k 3P 0 1,P 0 0 P (x,0) P (x,0) P (x,0)− + − + − += = = = =  

Taking Laplace Transform of above equations (1-8) we get  

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
n cc 0 n k 1 n k 2

n k 3

s n P s Q x,s x dx Q x,s x dx

Q x,s x dx 1

∗ ∗ ∗
− + − +

∗
− +

+ λ + β + λ − µ − η  

− θ =

∫ ∫

∫
      (9) 

 ( ) ( ) ( )n i cc i n i 1 i 1s (n i) P s (n i 1) P s 0∗ ∗
− − + −+ − λ + β + λ − − + λ =                       (10) 

 ( ) ( ) ( )n k 1 n k 1Q x,s s x Q x,s 0
x

∗ ∗
− + − +

∂ + + µ =  ∂
            (11) 

      ( ) ( ) ( )n k 2 n k 2Q x,s s x Q x,s 0
x

∗ ∗
− + − +

∂ + + η =  ∂
                                          (12) 

          ( ) ( ) ( )n k 3 n k 3Q x,s s x Q x,s 0
x

∗ ∗
− + − +

∂ + + θ =  ∂
                                             (13) 

 ( ) ( )n k 1 k n kQ 0,s k P s∗ ∗
− + −= λ                                                                             (14) 

       ( ) ( ) ( )
n k

n k 2 j
j 0

Q 0,s n j P s
−

∗ ∗
− +

=
= − β∑                                                                    (15) 

 ( ) ( )
n k

n k 3 cc j
j 0

Q 0,s P s
−

∗ ∗
− +

=
= λ ∑                         (16) 

5. CALCULATIONS OF (((( )))) (((( )))) (((( ))))w wP s L.T. P t ;w 0,1, .... n k 3∗∗∗∗     = = − += = − += = − += = − +      

Integrating (11) and using (14), 

( ) ( ) ( )
x

n k 1 k n k
0

Q x,s k P s exp sx u du∗ ∗
− + −

 
= λ − − µ 

  
∫                                             (17) 

So that 

 ( ) ( ) ( ) ( ) ( )
x

n k 1 k n k
0

Q x,s x dx k P s exp sx u du x dx∗ ∗
− + −

 
µ = λ − − µ µ 

  
∫ ∫ ∫                  

                 ( ) ( )k n kk P s q s∗ ∗
−= λ                                                     (18) 

Also, from (17) 
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 ( ) ( ) ( ) ( )
n k 1 n k 1 k n k

1 q s
P s Q x,s dx k P s

s

∗
∗ ∗ ∗
− + − + −

 −
= = λ  

  
∫                  (19) 

Similarly integrating (12) and using (15), 

 ( ) ( ) ( ) ( )
xn k

n k 2 j
j 0 0

Q x,s n j P s exp sx u du
−

∗ ∗
− +

=

 
= − β − − η 

  
∑ ∫                   (20) 

So that, 

 ( ) ( ) ( ) ( ) ( )
n k

n k 2 j
j 0

Q x,s x dx n j P s g s
−

∗ ∗ ∗
− +

=
η = − β∑∫                        (21) 

Also, from (20) 

 ( ) ( ) ( ) ( ) ( )n k

n k 2 n k 2 j
j 0

1 g s
P s Q x,s dx n j P s

s

∗−
∗ ∗ ∗
− + − +

=

 −
= = − β  

  
∑∫           (.22)  

Similarly, from (13) and (16) we have, 

 ( ) ( ) ( )
xn k

n k 3 cc j
j 0 0

Q x,s P s exp sx u du
−

∗ ∗
− +

=

 
= λ − − θ 

  
∑ ∫                          (23) 

So that  

 ( ) ( ) ( ) ( )
n k

n k 3 cc j
j 0

Q x,s x dx P s h s
−

∗ ∗ ∗
− +

=
θ = λ ∑∫                                        (24) 

Also  

 ( ) ( ) ( ) ( )n k

n k 3 n k 3 cc j
j 0

1 h s
P s Q x,s dx P s

s

∗−
∗ ∗ ∗
− + − +

=

 −
= = λ  

  
∑∫                   (25) 

From (10) 

 
( ) ( )

( )( ) ( ) ( )
( )

n i 1 0
i i 1

n i cc i

n i 1 P s
P s P s ;i 1,2,...., (n k)

s n i A s

∗
− +∗ ∗

−
−

 − + λ
= = = −  + − λ + β + λ         

(26) 

Where   

 
( ) ( )( )( )

( )
i

n r cc
i

n r 1r 1

s n r
A s ; i 1,2,....................., (n k)

n r 1
−

− +=

+ − λ + β + λ
= = −

− + λ∏  

Finally from (19), (22) and (25) with the use of (26) we have  

 

( ) ( ) ( )
( )

0
n k 1 k

n k

1 q s P s
P s k

s A s

∗ ∗
∗
− +

−

 −
= λ  

        

                                                      (27) 

 

( ) ( ) ( ) ( ) ( )
n k

n k 2 i 0
i 1

1 g s
P s n n i A s P s

s

∗ −
∗ ∗
− +

=

   −
= β + − β   

     
∑

       

                         (28) 
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( ) ( )
( ) ( )

n k

n k 3 cc 0
ii 1

1 h s 1
P s 1 P s

s A s

∗ −
∗ ∗
− +

=

   −
= λ +   

     
∑

            

                     (29) 

Substituting the values of (18), (21) and (24) in (9) we get 

 

( ) ( )( ) ( )
( ) ( ) ( )

( )
( )

( )
( )

k
0 n cc cc

n k

1
n k n k

cc
j jj 1 j 1

k q s
P s s n n g s h s

A s

(n j) g s h s

A s A s

∗
∗ ∗ ∗

−

−∗ ∗− −

= =

 λ
= + λ +β +λ − − β −λ


− β
− −λ 


∑ ∑          (30) 

6.  ANALYSIS OF CHARACTERISTICS

 
6.1 Long Run State Probabilities

 The probabilities that system will be in state 0S in long run is given by: 

( ) ( )
( )( )

0 0 0 1t s 0 s 0
0

1
p lim P t s lim P s lim

d
P s

ds

∗
−→∞ → → ∗

= = =  

Now let 

 ( )x q x dxφ = ∫ ,  ( )x g x dxψ = ∫ ,  ( )x h x dxξ = ∫  

and ( ) ( )
1i

i n r cc
r 1

D n r

−

−
=

 
= − λ + β + λ 
  
∏  

Then we have 

( ) ( ) ( )
n k

1 1
0 k n k n k cc i i i

i 1

p 1 k D A n n i D A
−

− −
− −

=


= + λ φ + + βψ + λ ξ + − β ψ +


∑
 

( )
1n k

1
cc i i

i 1

D A

−−
−

=


+λ ξ + 


∑           (31) 

and, 
1

i i 0p A p ; i 1,2,........., (n k).−= = −         (32) 

1
n k 1 k n k 0p k A p−

− + −= φλ         (33) 

( )
n k

1
n k 2 i 0

i 1

p n n i A p
−

−
− +

=

 
= ψβ + − 

  
∑         (34) 

n k
1

n k 3 cc i 0
i 1

p 1 A p
−

−
− +

=

 
= ξλ + 

  
∑                            (35) 
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6.2 Point-wise availability 
The Point-wise availability of the system in terms of its Laplace Transform is 
given by: 

( ) ( )A s L.T A t∗ =     

         ( ) ( ) ( )0 1 n kL.T P t P t .... P t−= + + +    

        
( ) ( )

n k

0
ii 1

1
1 P s

A s

−
∗

=

 
= + 
  
∑                        (36) 

6.3 Steady-state availability 
 The probability that in long run system will be operative is given by: 

  ( ) ( )
s 0

A lim sA s∗
→

∞ =  

            ( ) ( )
( )

n k
0

0
s 0 s 0 ii 1

P s
lim sP s lim s

A s

∗−
∗

→ → =
= + ∑  

             
n k

0
ii 1

1
1 p

A

−

=

 
= + 
  
∑                         (37) 

6.4 Expected up-time of the system 
 The expected up-time of the system during (0, t) is given by:  

( ) ( )
t

up
0

t A u duµ = ∫  

So that, 

( ) ( )
up

A s
s

s

∗
∗µ =                                        (38) 

6.5 Expected busy period of the repairman 

(a) Expected busy period of the repairman during time interval (0, t) when the 
system has failed due to short circuit, is given by 

( ) ( )
t

(1)
n k 1b

0

t P u du− +µ = ∫  

So that 

( ) ( )n k 1(1)
b

P s
s

s

∗
∗
− +µ =                                        (39) 

(b) Expected busy period of the repairman during time interval (0, t) when the 
system has failed due to open mode failure, is given by 

( ) ( )
t

(2)
n k 2b

0

t P u du− +µ = ∫  
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So that 

( ) ( )n k 2(2)
b

P s
s

s

∗
∗
− +µ =                                       (40) 

(c) Expected busy period of the repairman during time interval (0, t) when the 
system has failed due to common cause failure, is given by 

( ) ( )
t

(3)
n k 3b

0

t P u du− +µ = ∫
 

So that 

( ) ( )n k 3(3)
b

P s
s

s

∗
∗
− +µ =                                (41) 

6.6 Reliability and MTSF 
 The reliability of the system R(t) in terms of its Laplace Transform is  

 ( ) ( )R s L.T R t∗ =     

 This can be obtained by assuming the failed states n k 1 n k 2S , S− + − +  and 

n k 3S − + of the system as absorbing. Thus  

 ( ) ( ) ( ) ( )
( ) ( ) ( )0 1 n k

g s q s h s 0
R s P s P s .... P s ∗ ∗ ∗

∗ ∗ ∗ ∗
− = = =

 = + + +
 

 

        
( ) ( )

n k
1

n cc
ii 1

1
1 s n

A s

− −

=

 
= + + λ + β + λ    
  
∑                                  (42)  

 and MTSF of the system is given by 

 ( ) ( ) ( ) ( ) ( )
n k

1
n cc

s 0 ii 1

1
E T R t dt lim R s 1 n

A s

− −∗
→ =

 
= = = + λ + β + λ    

  
∑∫          (43)  

7. PROFIT FUNCTION ANALYSIS 

The net expected profit incurred in (0,t) is given by 

  P(t)=  Total revenue in (0,t)– Expected cost in (0,t) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3
0 up 1 2 3b b bP(t) K t K t K t K t= µ − µ − µ − µ                     (44) 

Where,  

0K = revenue per unit of time when the system is in any of the up states. 

1K = repair cost per unit of time when system has failed due to close    

   mode. 

2K = repair cost per unit of time when system has failed due to open          

mode. 



                                                                                                              Rakesh Gupta and Swati Kujal 

12 

3K = repair cost per unit of time when system has failed due to some 

common cause. 
The expected profit per unit of time in steady state is given by  

( ) ( ) ( ) ( ) ( )2 2 1* 2 2* 2 3*
0 up 1 b 2 b 3 b

t s 0 s 0 s 0 s 0

P t
P lim K lim s s K lim s s K lim s s K lim s s

t
∗

→∞ → → → →
= = µ − µ − µ − µ

( )0 1 n k 1 2 n k 2 3 n k 3K A K p K p K p− + − + − += ∞ − − −

( )
( )

n k

n k
i 1

0 3 cc 1 k 2 0
i n k ii 1

n i
1

K K 1 K k K n p
A A A

−

−
=

−=

  
− β  

  φ  = − ξλ + − λ − ψ β +    
   

    

∑
∑     (45)  

8. PARTICULAR CASE: 2-out-of-3:G System 

When repair time distributions are also negative exponential with parameters 
, ,η µ θ i.e 

( ) ( )g(x) exp x xg x dx= η −η ψ = ∫  

( ) ( )q(x) exp x xq x dx= µ −µ φ = ∫  

( ) ( )h(x) exp x xh x dx= θ −θ ξ = ∫  
Then for n=3 and k=2 we have 

a) ( )

1
3 cc cc2

0
2 cc

3 2 2 3
p 1 1

2

−
 λ λ λλ β β= + + + + + +  λ + β + λ µ η θ η θ   

         (46) 

( )
3

1 0
2 cc

3
p p

2

λ
=

λ + β + λ
        (47) 

( )
2 3

2 0
2 cc

6
p p

2

λ λ
=

µ λ + β + λ  
        (48) 

( )
3

3 0
2 cc

23
p 1 p

2

 λβ= + η λ + β + λ  
            (49) 

( )
cc 3

4 0
2 cc

3
p 1 p

2

 λ λ
= + θ λ + β + λ  

            (50) 

b) ( ) ( )
3

0
2 cc

3
A 1 p

2

 λ
∞ = + λ + β + λ  

                       (51) 



Classical and Bayesian Stochastic analysis…trichotomous system 

13 

c) ( ) ( ) ( ) 13
3 cc

2 cc

3
R s 1 s 3

s 2

−∗  λ
 = + + λ + β + λ   + λ + β + λ  

 

So that  

( ) 3 cc 3 cc 2 cc( 3 3 )t ( 3 3 )t ( 2 2 )t3

2 3

3
R t e e e

2 3
− λ − β−λ − λ − β−λ − λ − β−λλ  = + −

 λ −β − λ
       (52) 

d) 
( ) ( ) 13

3 cc
2 cc

3
MTSF 1 3

s 2

− λ
 = + λ + β + λ   + λ + β + λ  

                     (53) 

9. ESTIMATION STUDIES 

9.1 Classical Estimation 
In view of the assumptions of the model, the likelihood function of load sharing 
trichotomous k-out-of-n: G system is given below  

( ) ( )cc 1 2 2 3 3 4 5 6 73 5 6 71 2 4 T T T T T T Tn n n nn n n
1 2 3 4 5 6 7 cc 2 3L | U ,U ,U ,U ,U ,U ,U e− λ +λ +λ +β +µ +θ +ηΛ = λ λ λ β µ θ η% % % % % % %

 

Where ( )cc 2 3, , , , , ,Λ = λ λ λ β µ θ η and 

( ) ( ) ( )1 2 31 11, 12 1n 2 21, 22 2n 3 31, 32 3nU u u ,....u , U u u ,....u , U u u ,....u ,= = =% % %
 

( )44 41, 42 4nU u u ,....u=% are random samples of sizes 1 2, 3 4n ,n n and n respectively 

for failure times of operating components and 5 6 7U ,U and U% % % are random samples 

of sizes 5 6 7n ,n and nrespectively for the repair times and  
in

i ij
j 1

t u ; i 1, 2,....,7
=

= =∑ . 

By using maximum likelihood approach, the maximum likelihood estimates of 
Λ are  

3 5 6 71 2 4
cc 2 3

1 2 3 4 5 6 7

n n n nn n nˆ ˆ ˆ ˆ ˆˆ ˆ, , , , , ,
t t t t t t t

λ = λ = λ = β = µ = θ = µ =  

Using large sample theory of M.L.E, the asymptotic sampling distribution of  Λ  

is ( )1
7N 0, −∆  where ∆  is observed Fisher Information diagonal matrix of 

order7 7× . The elements of ∆  are given by: 
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2 2
1 2

11 222 2 2 2
cc cc 2 2

2 2
3 4

33 442 2 2 2
3 3

2 2
5 6

55 662 2 2 2

2

77 2

n nlog L log L
E , E ,

n nlog L log L
E , E ,

n nlog L log L
E , E ,

log L
E

   ∂ ∂∆ = − = ∆ = − =     ∂λ λ ∂λ λ  

   ∂ ∂∆ = − = ∆ = − =     ∂λ λ ∂β β  

   ∂ ∂∆ = − = ∆ = − =      ∂µ µ ∂θ θ   

 ∂∆ = −
∂η

7
2

n
=  η

 

The asymptotic ( )1 100%− γ ×   confidence interval for Λ  is ( )2
ˆ ˆz VγΛ + Λ . 

Here ( )ˆV Λ  is variance of ̂Λ  obtained from ∆  and  2zγ  is upper  ( )th100 2× γ  

percentile of standard normal distribution. The respective asymptotic 

distribution of MTSF (M) is ( )' 1
7N 0,M M−∆   

where '

cc 2 3

M M M M M M M
M , , , , , ,

 ∂ ∂ ∂ ∂ ∂ ∂ ∂=  ∂λ ∂λ ∂λ ∂β ∂µ ∂θ ∂η 
 

and that of Availability (A) is ( )' 1
7N 0,A A−∆  

where '

cc 2 3

A A A A A A A
A , , , , , ,

 ∂ ∂ ∂ ∂ ∂ ∂ ∂=  ∂λ ∂λ ∂λ ∂β ∂µ ∂θ ∂η 
. 

9.2 Bayesian Estimation 
In this we conduct a Bayesian study by assuming the model parameters as 

random variables. The prior distribution of parameters 

( )cc 2 3, , , , , ,Λ = λ λ λ β µ θ η are assumed to be conjugate i.e. gamma family as 

follows 

)ν,G(~η),ν,G(~θ),ν,G(~µ

),ν,G(~β),ν,G(~λ),ν,G(~λ),ν,G(~λ

776655

4433322211cc

ϕϕϕ
ϕϕϕϕ

 

Since the prior distribution of ( )cc 1 1is G ,λ ϕ ν with density  

( ) ( )
1

1 cc11
cc cc cc

1

p e ; 0
ϕ

−ν λϕ−ν
λ = λ λ >

Γ ϕ
 

And 

 ( ) ( )1 1
cc cc 2

1 1

E ; V
ϕ ϕλ = λ =
ν ν
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Then according to Bayesian theory, the posterior distribution of ccλ  given 1T is  

 
This is density 
of Gamma 

distribution with parameters ( )1 1 1 1n ,T+ ϕ + ν  

Preceding analogously the posterior distribution of remaining parameters are 

)νT,G(n~)U
~

(ηπ)νT,G(n~)U
~

(θπ

)νT,G(n~)U
~

(µπ)νT,G(n~)U
~

(βπ

)νT,G(n~)U
~

(λπ)νT,G(n~)U
~

(λπ

777777666666

555555444444

33333332222222

++++

++++

++++

ϕϕ

ϕϕ

ϕϕ

 

 
 

One can generate the observations from the above posterior distribution for 
finding the Bayesian estimation and HPD intervals of the parameters. 

10. SIMULATION STUDY AND COMPARISONS 

Now we shall use the simulation results to discuss posterior performance of A 
(∞) and MTSF for the redundant repairable system. We have fixed the sample 

size in n;i 1,2,....,7= = . We run 100 simulations for each prior distribution. For 

each simulation run we first generate the values from assumed prior distribution. 
These simulated values are then used as parameter values. A sample of size n is 
then generated for all variables and ML and Bayesian estimates including their 
SE and PSE and confidence/HPD intervals are computed. The samples are 
generated using R-software and for HPD intervals boa package of R-software has 
been used. 

Tables 1, 2 and 3 provide ML and Bayesian estimates of MTSF and also their 

SE/PSE and confidence/HPD interval for varying values of cc 2 3, ,λ λ λ . A 

common observation in all three cases is that as failure rate increases MTSF 
decreases. Moreover ML estimates are closer to true values than Bayes estimates. 
We also observed that both the type of estimates coincide to true value when 
failure rate increases. 

Table 4 and Table 5 provide PM and HPD intervals of ( )A ∞ and MTSF for the 

fixed values of  

parameters2 3 cc0.05, 0.005, 0.0001, 0.005,λ = λ = λ = β = 1.5, 1.8, 2.0µ = θ = η = . 

The tables reveal that as sample size increases HPD intervals become narrower 

( ) ( )
( )

( )1 1

1 1 cc1

n
t1 1 n 1

cc 1 cc cc
1 1

t
h | U e ; 0

n

+ϕ
− ν + λ+ϕ−+ ν

λ = λ λ >
Γ + ϕ

%
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and PM are closer to true values 0.9849 and 37.7488 of ( )A ∞  and MTSF 

respectively. 

Table 6 and Table 7 give PM and HPD intervals of MTSF and ( )A ∞ for various 

sample sizes when the other parameters are kept fixed 

as 2 3 cc0.05, 0.005, 0.0001, 0.005, 1.5, 1.8, 2.0λ = λ = λ = β = µ = θ = η= . Here the two 

parameter gamma prior with various values of its parameters (1 1,ϕ ν ) are 

assumed. The results are compared with true values 0.9849 and 37.7488 of 

( )A ∞  and MTSF. It is evident that PM is more stable and closer to true value 

and HPD intervals are much smaller when sample size is large.  

11. CONCLUSION 

To study the behaviors of Reliability, MTSF and profit function in case of 2-out-
of-3: G system w.r.t various parameters, we plot the curves for these 
characteristics in figures 2, 3 and 4 respectively. In fig.2 the reliability curves are 

drawn to study the impact of change of 2λ  and 3λ  on ( )R t  when other 

parameters are kept fixed as cc 0.002, 0.750, 0.250, 0.500λ =β = µ = θ = η= . From 

the figure we observed that initially at t=0, the reliability of the system is one as 
it should be and decreases uniformly as mission time t increases. Also, the 

reliability of the system decreases with the increase of 2λ  and 3λ . In fig.3 the 

curves are drawn for the MTSF in respect of the common cause failure rate 

ccλ for two different values of ( )3 0.05, 0.08λ = and three different values of 

( )2 0.20, 0.40, 0.80λ = whereas β is kept fixed as 0.002. Similar trends in case of 

MTSF are observed for change of 2λ  and 3λ  as in case of ( )R t . Fig.4 depicts 

the behavior of profit function in respect of ccλ  for varying values of 2λ  and 3λ  

while the other parameters are kept fixed as 

0 1 2 30.002, 0.750, 0.250, 0.500, K 50, K 150, K 275, K 350.β = µ = θ = η = = = = = Her

e we observed linear decreasing trend as ccλ  increases. The curve clearly reveals 

that profit decreases with the increase in failure rates 2λ  and 3λ . Another 

important observation is that for 3 0.08λ = system incurs loss for ccλ > 0.050, 

0.060 and 0.070 respectively when2 0.80, 0.40 and 0.20λ = . Similarly for 

3 0.05λ = system is profitable only for ccλ < 0.075, 0.080 and 0.085 respectively 

when 2 0.80, 0.40 and 0.20λ = . 
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The Bayesian approach adopted in this paper using apt prior provides an 
alternative way of dealing with 2-out-of-3:G load sharing system and also gives 
reliable estimates of MTSF and Availability. The conclusions drawn from the 
Tables 1 to 5 representing the Bayesian study in respect of various parameters 
have already been mentioned in previous section. The computations involved are 
relatively easy. So we can simply conclude that Bayesian approach is easy to 
implement for analyzing.  
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Table 1: The values of MTSF for varying ccλλλλ  and fixed   

               2 30.05, 0.08, 0.05λ = λ = β =λ = λ = β =λ = λ = β =λ = λ = β =  

ccλλλλ  True 
MTSF 

ML 
MTSF 

SE Confidence 
Interval 

Bayes 
MTSF 

PSE HPD 
interval 

0.005 5.4955 5.5973 0.3838 4.8450, 
6.3496 

5.6030 0.3019 5.1590, 
6.3529 

0.007 5.4393 5.5371 0.3765 4.7991, 
6.2751 

5.5430 0.2962 5.1175, 
6.2773 

0.009 5.3843 5.4781 0.3765 4.7538, 
6.2024 

5.4844 0.2908 5.0608, 
6.2036 

0.010 5.3571 5.4490 0.3661 4.7314, 
6.1667 

5.4545 0.2882 5.0301, 
6.1659 

0.030 4.8654 4.9250 0.3106 4.3162, 
5.5337 

4.9318 0.2473 4.5411, 
5.5148 

0.050 4.4545 4.4904 0.2726 3.9561, 
5.0246 

4.4993 0.2212 4.0382, 
4.9260 

0.090 3.8075 3.8122 0.2265 3.3680,  
4.2561 

3.8257 0.1907 3.4474, 
4.1772 

Table2: The values of MTSF for varying 2λλλλ  and fixed  

               cc 30.005, 0.080, 0.050λ = λ = β =λ = λ = β =λ = λ = β =λ = λ = β =  

2λλλλ  
True 

MTSF 
ML 

MTSF 
SE Confidence 

Interval 
Bayes 
MTSF 

PSE HPD 
interval 

0.005 7.8150 8.4851 0.7601 6.9951, 
9.9751 

8.5064 0.7085 7.2183, 
9.8527 

0.008 7.5530 8.1368 0.7069 6.7512, 
9.5223 

8.1555 0.6441 7.0059, 
9.4220 

0.010 7.3924 7.9261 0.6757 6.6017, 
9.2505 

7.9357 0.6059 6.8617, 
9.1408 

0.030 6.2140 6.4465 0.4787 5.5082, 
7.3849 

6.4486 0.3922 5.6374, 
7.1676 

0.050 5.4955 5.5973 0.3838 4.8450, 
6.3495 

5.6029 0.3018 5.1589, 
6.3528 

0.070 5.0116 5.0463 0.3292 4.4010, 
5.6916 

5.0564 0.2541 4.7001, 
5.7126 

0.100 4.5237 4.5070 0.2812 3.9558, 
5.0582 

4.5111 0.2164 4.1878, 
5.0492 
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Table 3: The values of MTSF for varying 3λλλλ  and fixed  

               2 cc0.050, 0.005, 0.050λ = λ = β =λ = λ = β =λ = λ = β =λ = λ = β =  

3λλλλ  
True 

MTSF 
ML 

MTSF 
SE Confidence  

Interval 
Bayes 
MTSF 

PSE HPD 
Interval 

 
 

0.005 
 

6.3127 
 

6.7899 0.5788 
5.6554, 
7.9245 6.8127 

 
0.5373 

5.7540, 
7.8221 

0.008 6.2406 6.6751 0.5564 
5.5846, 
7.7657 6.6957 0.5069 

5.7031, 
7.6370 

0.010 6.1964 6.6058 0.5431 
5.5412, 
7.6703 6.6227 0.4887 

5.6704, 
7.5228 

0.050 5.6777 5.8439 0.4153 
5.0299, 
6.6580 5.8505 0.3345 

5.1360, 
6.5008 

0.080 5.4955 5.5973 0.3838 
4.8450, 
6.3495 5.6029 0.3018 

5.1589, 
6.3528 

0.500 5.0254 5.0049 0.3392 
4.3400, 
5.6697 5.0045 0.2631 

4.5735, 
5.5964 

1.000 4.9553 4.9216 0.3373 
4.2604, 
5.5828 4.9201 0.2624 

4.4815, 
5.5054 

Table 4: PM and HPD intervals for (((( ))))A ∞∞∞∞   

             cc 2 30.0001, 0.050, 0.005, 0.005, 1.50, 1.80, 2.00λ = λ = λ = β = µ = θ = η =λ = λ = λ = β = µ = θ = η =λ = λ = λ = β = µ = θ = η =λ = λ = λ = β = µ = θ = η =  

n 
PM SD 99% HPD 95%HPD   

10 0.9741 0.0076 0.9562,0.9841 0.9562,0.9841 
20 0.9837 0.0024 0.9788,0.9874 0.9788,0.9874 
50 0.9839 0.0019 0.9799,0.9873 0.9786,0.9873 
100 0.9852 0.0012 0.9832,0.9873 0.9812,0.9873 
500 0.9851 0.0005 0.9841,0.9865 0.9835,0.9867 
1000 0.9852 0.0004 0.9843,0.9860 0.9841,0.9863 

Table 5: PM and HPD intervals MTSF  
             cc 2 30.0001, 0.050, 0.005, 0.005, 1.50, 1.80, 2.00λ = λ = λ = β = µ = θ = η =λ = λ = λ = β = µ = θ = η =λ = λ = λ = β = µ = θ = η =λ = λ = λ = β = µ = θ = η =  

n 
PM SD 99% HPD 95%HPD   

10 29.3523 5.5477 23.4663,39.3976 23.4663,39.3976 
20 36.6146 3.3514 28.0552,42.0560 28.0552,42.0560 
50 36.2925 3.2211 30.1177,43.2833 31.6792,43.2833 
100 37.6523 2.0157 32.8652,43.1579 34.0656,41.9932 
500 37.7919 1.0574 35.5195,40.5782 35.6074,39.5424 
1000 38.3447 0.7736 36.4766, 40.2702 36.7965,39.7861 
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Table 6: Estimate of MTSF  

              cc 2 30.0001, 0.050, 0.005, 0.005, 1.50, 1.80, 2.00λ = λ = λ = β = µ = θ = η =λ = λ = λ = β = µ = θ = η =λ = λ = λ = β = µ = θ = η =λ = λ = λ = β = µ = θ = η =  

 
(((( ))))1 1,ϕ νϕ νϕ νϕ ν =(5,100) (((( ))))1 1,ϕ νϕ νϕ νϕ ν =(25,500) (((( ))))1 1,ϕ νϕ νϕ νϕ ν =(50,1000) 

n PM 95%HPD PM 95%HPD PM 95%HPD 
10 29.3523 23.4663, 

39.3976 
30.41098 24.2095, 

40.6840 
30.70753 24.25479, 

41.08183 
20 36.6146 28.0552, 

42.0560 
37.59969 28.9425 

,43.0019 
37.95242 29.23676, 

43.38808 
50 36.9252 31.6792, 

43.2833 
36.61148 31.9352, 

43.6114 
36.82872 31.86025, 

43.49909 
100 37.6523 34.0656, 

41.9932 
37.71527 34.1622, 

42.0146 
37.77059 34.25127, 

42.02907 
500 37.7919 35.6074, 

39.5424 
37.79789 35.6143, 

39.5487 
37.80476 35.62234, 

39.55602 
1000 38.3448 36.7965, 

39.7861 
38.34639 36.7995, 

39.7867 
38.34836 36.80311, 

39.78748 

Table 7: Estimate of (((( ))))A ∞∞∞∞   

              cc 2 30.0001, 0.050, 0.005, 0.005, 1.50, 1.80, 2.00λ = λ = λ = β = µ = θ = η =λ = λ = λ = β = µ = θ = η =λ = λ = λ = β = µ = θ = η =λ = λ = λ = β = µ = θ = η =  

 (((( ))))1 1,ϕ νϕ νϕ νϕ ν =(5,100) (((( ))))1 1,ϕ νϕ νϕ νϕ ν =(25,500) (((( ))))1 1,ϕ νϕ νϕ νϕ ν =(50,1000) 

n PM 95%HPD PM 95%HPD PM 95%HPD 

10 0.9741945 0.9562, 
0.9841 

0.9749949 0.9574, 
0.9846 

0.9752049 0.9577, 
0.9848 

20 0.9837078 0.9788, 
0.9874 

0.984156 0.9794, 
0.9877 

0.9843115 0.9797, 
0.9878 

50 0.9839146 0.9799, 
0.9873 

0.9840634 0.9801, 
0.9874 

0.9841635 0.9803, 
0.9875 

100 0.9852899 0.9832, 
0.9873 

0.9853162 0.9832, 
0.9873 

0.9853392 0.9832, 
0.9874 

500 0.9851777 0.9841, 
0.9865 

0.9851803 0.9841, 
0.9865 

0.9851832 0.9841, 
0.9865 

1000 0.9852444 0.9843, 
0.9860 

0.9852451 0.9843,  
0.9860 

0.9852459 0.9843, 
0.9860 
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CURVE FOR RELIABILITY FUNCTION W.R.T MISSION TIME. 

 
Fig.2 

 
BEHAVIOUR OF MTSF W.R.T. ccλλλλ  FOR VARYING VALUES OF 

2λλλλ AND 3λλλλ   

 
 

Fig.3 
 

β=0.002, μ=0.75, θ=0.25, 

η=0.50,          =0.002 

M
T

S
F
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BEHAVIOUR OF PROFIT W.R.T. VARYING VALUES OF 

ccλλλλ

 
Fig.4 
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