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ABSTRACT 

In this paper, the problem of optimum compromise allocation of repairable and 

replaceable components in a system is formulated as a multi-objective all integer 

non linear programming problem ( AINLPP ). A solution procedure using the five 

different approaches are considered namely the goal programming, ∈- constraint, 

Distance-based, 1D - distance and value function to obtain the compromise 

allocation for a system. A numerical example is also presented to illustrate the 

computational details. 

1. INTRODUCTION 

Life inevitably involves decision making, choices and searching for 

compromises. It is only natural to want all of these to be as good as possible, in 

other words, optimal. The difficulty here lies in the (at least partial) conflict 

between our various objectives and goals. Most everyday decisions and 

compromises are made on the basis of intuition, common sense, chance or all of 

these. However, there are areas where mathematical modeling and programming 

are needed, such as engineering, economics, sample surveys etc.  

In many real-life cases multi-objective optimizations techniques are required to 
be considered for determining an optimal policy. Some authors have discussed 

the multi-objective optimization formulations such as Busacca et al. (2001), Fu 

and Diwekar (2004), Panda et al. (2005), Diaz-Garcia and Ulloa (2006, 2008), 

Wang et al. (2009), Khowaja et al. (2012), Ghufran et al. (2012) Ali et al. 

(2011), Ali et al. (2013), Raghav et al. (2014) and Khan et al. (2003) suggested 

new compromise criterion for determining an optimal policy.  

In many industrial environments, systems are required to perform a sequence of 
operations (or missions) with finite breaks between each operation. During these 

breaks, it may be advantageous to perform repair and replacement on some of 

the system components. However, it may be impossible to perform all desirable 

maintenance activities prior to the beginning of the next mission due to 
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limitations on maintenance resources. A repairable system is a system in which 

the failed or deteriorated components can be repaired to operate normally. Many 

authors have discussed the allocation problem of repairable components. Among 

them are Rice et al. (1998), Schneider and Cassady (2004), Rajagopalan and 

Cassady (2006), Iyoob et al. (2006), Schneider et al. (2009), Ali et al. (2013a, 

2011a, 2011b), Ali and Hasan (2013, 2013a) and many others. 

In this paper we work out the compromise allocation of repairable and 

replaceable components in a system using the compromise criterion to maximize 

the system reliability subject to the cost and time constraints.  The problem is 

formulated as multi-objective all integer non linear programming problem 

( AINLPP ). Using the initial knowledge about the failed components within the 

subsystem; this problem is solved by the techniques namely the goal 

programming, ∈- constraint, Distance-based, 1D - distance and value function to 

obtain the compromise allocation of replaceable and repairable components. A 

numerical example is worked out to illustrate the computational details of the 

techniques. The numerical solution is obtained through the optimization 

software LINGO. 

LINGO is a user’s friendly package for constrained optimization developed by 

LINDO Systems Inc. A user’s guide- LINGO User’s Guide (2001) is also 

available. For more information one can visit the site http://www.lindo.com. 

2. FORMULATION OF THE PROBLEM AND NOTATIONS  

We assume that the system comprises subsystems of two types of 

characteristics. One is the characteristics of subsystems in which the 

components are very sensitive to the functioning of the whole system and, 

therefore, on deterioration these should be replaced by new ones. Let these 

subsystems range from 1 to s . The second characteristic of subsystems is those 

in which the components after deterioration can be repaired and then replaced. 

Let such subsystems range from 1+s  to m . In fig. 1 the group X  consists of 

the s  subsystems with sensitive components which on failure are replaced by 

new ones and Y the remaining )sm( −  subsystems in which the components 

can be repaired. 

 

Figure 1-Parallel components in Repairable and Replaceable Subsystems 
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In fig.1 the group X  is a series arrangement of the subsystems (subsystem 1, 

subsystem 2… subsystem s ); its reliability can be defined as  
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And in fig.1 the group Y  is also a series arrangement of the subsystems 

(subsystem 1+s , subsystem 2… subsystem m ); its reliability can be defined as  
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At the completion of a particular production run, each component in a 

subsystem is either functioning or failed. Ideally all the failed components in the 

subsystems should be repaired or replaced by its new one prior to the beginning 

of the next production run. However, due to the constraints on the time and cost, 

it may not be possible to repair and replace all the failed components in the 

subsystems. Let ija  be the total number thj −  type of failed components in 

thi −  subsystem.  

The time required for repaired or replaced by its new one all the failed 

components in the system is given by   
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                                   (3) 

where ijt  is the time required to repair and replace a thj −  type of failed 

component in thi − subsystem. The maintenance time available for repairing 

and replacing the failed components between two production runs is 0T  units.  

If TT <0 , then all failed components cannot be repaired and replaced prior to 

beginning of the next production run. 

The cost required for replacing and repairing the failed components in the 

system is given by 

∑ ∑= =
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                                                 (4) 

The maintenance cost available for repairing and replacing the failed 

components between two production runs is 0C  units.  

If CC <0 , then all failed components cannot be repaired and replaced prior to 

beginning of the next production run.  



Irfan Ali  and S. S. Hasan 

 

124

In such cases, a method is needed to decide how many failed components should 

be repaired and replaced prior to the next production run and the rest be left in a 

failed condition.  

This process is referred to as selective maintenance (See Rice et al. (1998)).  

In the selective maintenance the number of thj −  type components available for 

the next production run in the thi − subsystem will be  

ijiji dan +− )( , mi ,...,2,1=                   (5) 

where ijd  is the number of repaired and replaced thj −  type components in 

subsystem i  prior to the next production run respectively and in  is the total 

number of components available in parallel in the thi − subsystem.  

We have assumed that the repair and replace time and cost of each failed 

components in a subsystem are same. The reliability of the subsystems range 

from 1 to s  for a production run is given by 
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And the reliability of the subsystems range from 1+s  to m  for a production run 

is given by 
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The repair time constraint for the system is given as  

01 1
Tdt

m

i

n

j ijij

i

≤∑ ∑= =
                                   (8) 

and the repair cost constraint for the system is given as 

01 1
Cdc

m

i

n

j ijij

i

≤∑ ∑= =
                                    (9) 

However, in the event when the reliability of the subsystems of group X  and 

group Y  time are of equally serious concern.   

Let us consider for instance the following multi-objective problem: 
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In many practical situations the constraint equations (iii)
 
and (iv) are not fixed 

and taken as probabilistic. Thus the above problem (10) can be written in the 

following chance constrained programming form as: 
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where 0p , 10 0 ≤≤ p  is a specified probability. 

In the above problem (11), let us assume that ijt
 
and ijc  are independently 

normally distributed random variables. The equivalent deterministic non-linear 

programming problem (11) to the stochastic programming problem is given by 
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3. OPTIMIZATION METHODS FOR SOLVING MULTI-

OBJECTIVE PROGRAMMING PROBLEM 

The design parameters involved in reliability allocation problem has usually 

been taken to be precise values. This means that every probability involved is 

perfectly determinable. In this case, it is usually assumed that there exist some 

complete probabilistic information about the system and the component 

behavior. However, in real life situations, there are not sufficient statistical data 

available in most of the cases where the system is new or exists only as a 

project. It is not always possible to observe the stability from the statistical point 

of view. This means that only some partial information about the system 

components is known. The various methods proposed to solve the multi-

objective programming problem of stochastic reliability allocation problem can 

be classified according to the available information about the system. 

3.1 The Goal Programming Technique 

This method is used when we have considered the problem of more than one 

objective. In reliability optimization, we have considered system has several 

subsystems and these subsystems have several components. Each and every 

subsystem has distinct characteristic components itself. The system which has 
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been described and formulated as multi-objective programming problem (see 

equation12) in previous section.  

Now the formulated problem must know the importance of the characteristics 

that is all the information about the characteristics is given. Now the problem 

(equation 12) may be stated separately for p  characteristics components within 

a subsystem are used. The solution procedure for solving p  characteristics 

components by using goal programming are given as: 
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where  
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ijk dR be the optimum value of )( ijk dR  obtained by solving the following 

non linear integer programming problem  



























==≥

∀≤≤

≤+

≤+

=

∑ ∑∑∑

∑ ∑∑∑

= = ==

= = ==

iijij

ijijij

m

i

n

i

n

j

cijij

n

j

ij

m

i

n

i

n

j

tijij

n

j

ij

ijk

njandmian

egeraredad

CdKdc

TdKdt

toSubject

pkdRMaximize

i

ij

i

i

ij

i

...,,2,1,...,2,1,

int,0

...,,2,1),(

1

0

1 1

22

1

1

0

1 1

22

1

σ

σ

α

α

                       (14) 



Irfan Ali  and S. S. Hasan 

 

128

Further let   
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(15) denote the reliability of the system under the compromise allocation, where 

ijd  are to be worked out. 

Obviously )()(
~ *

ijkijk dRdR ≤  and pkdRdR ijkijk ,...,2,1;0)(
~

)(* =≥−  will give the 

decrease in the system reliability due to not using the individual optimum 

allocation for thk −  characteristic components. 

Now consider the following goal:  

“Find ijd  such that the decrease in the reliability of the system for each 

components characteristic due to the use of compromise allocation, ijd  instead of 

individual optimum allocation, should not greater than ),...,2,1( pkk =δ ”.   

Where pkk ,...,2,1,0 =≥δ  are the unknown goal variables. 

To achieve these goals ijd  must satisfy 
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The value ∑ =

p

k k1
δ  will give us the total decreases in reliability of the system by 

not using the individual optimum allocations. 

This suggests the following integer goal programming problem ( IGPP ) to 

solve: 
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3.2 The ∈- Constraint Technique 

This method is used when only partial information is available. For using this 

method first we investigate the most important characteristics. In ∈-constraint 

method one of the objective functions is selected to be optimized and remaining 

objective functions are converted into constraints by setting an upper bound to 

each them, See S. Rios et al. (1989), Miettinen (1999). 

Let us assume that the thl −  characteristic { }pl ,...,2,1∈  be the most important 

characteristic in the study. Under this technique problem (12) for obtaining the 

optimum solution can be restated as: 

























==≥

∀≤≤

≤+

≤+

=≠≥

∑ ∑∑∑

∑ ∑∑∑

= = ==

= = ==

iijij

ijijij

m

i

n

i

n

j

cijij

n

j

ij

m

i

n

i

n

j

tijij

n

j

ij

rrijk

lijk

njandmian

egeraredad

CdKdc

TdKdt

prlrdRtoSubject

dRMaximize

i

ij

i

i

ij

i

...,,2,1,...,2,1,

int,0

,,,2,1,,)(

,)(

1

0

1 1

22

1

1

0

1 1

22

1

σ

σ

θ

α

α

K

                        (19) 



Irfan Ali  and S. S. Hasan 

 

130

where, rθ is pre established bound for each of the 1−p  remaining reliability of 

the system, which are given as constraints. 

In practice, rθ  can be defined as the minimum individual values of the 

following problems: 
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3.3 Distance based Technique 

In many situations, sufficient information about the components is not available, 

or it is difficult to decide which is the most important subsystem within the 

system. In such situations, distance based method is very useful, See S. Rios et 

al. (1989), and R. E. Steuer (1986).  

Under this technique, problem (12) may be expressed as follows, 

Let the p - component vector of targets ξ  is  
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where kξ  be the ideal point or goal for the objective .p,...,,k);d(R ijk 21=  

This vector of target ξ  can be computed by maximizing each objective 

.p,...,,k);d(R ijk 21=  separately. Thus, ξ  is the vector of individual 

constrained minima, which can be obtained by solving the following AINLPP : 
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After computing ξ , the optimization problem is formulated as 
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where  

[ ]kijk dRD ξ),(   may be expressed as [ ]∑ =
−

p

k kijk dR
1

2
)( ξ . Because 

minimization of [ ]∑ =
−

p

k kijk dR
1

2
)( ξ  is equivalent to 

minimize [ ]∑ =
−

p

k kijk dR
1

2
)( ξ , the AINLPP  (22) becomes 
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Alternatively, Khuri & Cornell (1986) proposed another distance given by 
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3.4 1D -Distance Method of Lexicographic Goal Programming  

In the problem (12), let us first consider the reliability of the replacement 

components more important than the reliability of the repairing component 

within the system. Then we solve the problem (12) by maximizing (i) subject to 
(iii) to (vi) (i.e. we neglect the objective (ii)).   

Let the maximum of the NLPP  (12), while neglecting the second objective be 
∗

treplacemenij )d(R . Next we solve the following NLPP :  
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where 1δ  is the deviational variable. By solving the NLPP (25) let the optimum 

reliability of the repairing component obtained be ∗
repairingij )d(R . The following 

lexicographic goal programming problem is then solved:  
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Let the solution of the NLPP  (26) obtained be ( ( ) ( )11
1 md,...,d ).  

Next we assume that the reliability of the repairing components is more 

important than the reliability of the replacement of the components.  

Then we solve the NLPP  (12) by considering reliability of the repairing 

components and neglecting the reliability of the replacement of the components.  

Let the maximum so obtained be ∗
repairingij )d(R .  

In the next step solve the following NLPP  for optimum reliability of the 

replacement of the components 
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Let the maximum reliability obtain be ∗
treplacemenij )d(R . 

The following lexicographic goal programming problem is then solved:   
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Let the solution of the NLPP (28) obtained be ( ( ) ( )22
1 md,...,d ). In this way the 

priorities are given to the objectives one after the other and a set of solutions is 

obtained. Out of these solutions, an ideal solution is identified as follows:  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ){ } { },,...,,,max,...,,max,,max **
2

*
1

212
2

1
2

1
2

1
1

*
1 mmm dddddddddd == say.  

The 1D -distances of different solutions from the ideal solution defined in (30) 

below are then calculated. The solution corresponding to the minimum 1D -

distance gives the best compromise solution. A general procedure with P  

objectives is the following. As explained above, we will obtain !P  (Factorial) 

different solutions by solving the !P  problems arising for !P  different priority 

structures.  Let { } !1,,...,, )()(
2

)(
1

)(
Pdddd mi ≤≤= πππππ  be the !P  number of 

solutions obtained by giving priorities to P  objective functions.  Let 

( )**
2

*
1 ,...,, mddd  be the ideal solution. But in practice ideal solution can never be 

achieved.  
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The solution, which is closest to the ideal solution, is acceptable as the best 

compromise solution, and the corresponding priority structure is identified as 

most appropriate priority structure in the planning context. To obtain the best 

compromise solution, following goal programming problem is to be solved. 
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where \πε i are the deviational variables. 

Now, ∑
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Let the minimum be attained for p=π .Then { })()(
2

)(
1 ,...,, p

m
pp

ddd  is the best 

compromise solution of the problem. 

3.5 The Value Function Technique  

The MNLPP (12) under the value function technique are 
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where (.)ψ  is a scalar function that summarizes the importance of each of the 

subsystem reliability of the p  characteristics failed components. Usually, (.)ψ  

is taken as weighted sum of p  characteristics operational components within 

the subsystem. Under this property equation (33) becomes: 
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where ∑ =
=≥=

p

k kkk pk
1

,,...,2,1,0,1 ααα are the weights according to the 

relative importance, that how many components is operational within the 

subsystem. When complete information about the failed and operational 

components within the subsystem is available, the weights may be decided 

according to some measures of the relative importance of the operational 
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components within the subsystems (see Ali and Hasan 2013). For example, 

weights kα  may be taken as 
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Using (12) AINLPP (34) can be rewritten as 
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4. NUMERICAL ILLUSTRATIONS AND DISCUSSION  

Consider a system having the group X  consisting of 3 subsystems and also the 

group Y Y consisting of 4 subsystems. The available time between two missions 

for repairing and replacing is 150 time units. The available cost of maintenance 

for repairing and replacing is for the next mission is 860 units. For the simplicity 

we have consider in the above numerical illustration; the reliability of each 

component in a subsystem is same, cost spent and time taken on replacing and 

repairing each component within a subsystem are same i.e. ji = . The remaining 

parameters for the various subsystems are given in table 1.  

Table 1: The number of failed components and the respective cost and time etc. 

in the various subsystems 

Group X (Replaced) Group Y (Repair) 

Subsystem 1 2 3 4 5 6 7 

ijn  6 5 10 7 9 12 10 

ijr  0.8 0.75 0.8 0.8 0.75 0.8 0.7 

ijt  2 3 1 20 28 22 22 

2

ijtσ  0.15 0.18 0.10 0.35 0.40 0.50 0.60 

ijc  20 10 20 40 30 45 65 

2

ijcσ
 

0 8 5 8 5 7 9 

ija  3 3 6 5 7 9 7 

The 1D - distance solution tables are given as: 

Table 2: (Solutions) 

Run Priorities 
11d

 
22d  33d  44d  55d  66d  77d  

1 )2()1( Re,Re pairplace

 

2 3 1 1 0 0 1 

2 )1()2( Re,Re pairplace

 

2 3 0 2 1 0 2 

ideal solution (
*
ijd ) 2 3 1 2 1 0 2 
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Table 3: The −1D distance from the ideal solutions 

priority to 
11d  22d  33d  44d  55d  66d  77d  r

D )( 1  

Replace 0 0 0 1 1 0 1 3 

Repair 0 0 1 0 0 0 0 1 

In Table 3 the 1D - distance of all possible solutions from the ideal solution are 

calculated. From Table 3 it is clear that the minimum of the 1D - distance of the 

two priority structure solutions from the ideal solutions are equal to 1. 

Therefore, we choose repair components priority structure. The compromises 

solutions are obtained through the following techniques, the goal programming, 

∈- constraint, Distance-based, 1D - distance and value function. These 

techniques are applied to an example and the respective compromise allocations 

of components are summaries into a table 4.  

Table 4: Optimum allocation of replaceable and repairable components under 

various Techniques 

Techniques 
11d  22d  33d  44d  55d  66d  77d  

Goal 

Programming 

2 3 0 2 1 0 2 

∈-Constraint 2 1 0 2 1 0 3 

Distance Based 2 3 0 1 2 0 2 

Khuri & Cornell 2 3 0 1 2 0 2 

1D - distance 2 3 0 2 1 0 2 

Value Function 2 3 0 2 1 0 2 
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