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ABSTRACT 

Genes and environmental components lead to the development of several complex 

diseases and the analyses of these factors play a major role in the prevention 

and/or control of the diseases in human population. The analysis is, however, not 

easy because of the fact that genes and environmental factors interplay while 

causing diseases. If this interaction is ignored at the time of estimation of the 

contributions of these factors, it may provide incorrect estimates of the 

proportions of the disease caused by these factors. The case-control study, where 

sampling is conditional on the presence or absence of the disease, is a powerful 

epidemiological tool for studying such problems and the Bayesian framework 

offers increased level of flexibility for the possible modelling. A well known and 

user-friendly approach to analyze such data is multinomial-Dirichlet modelling 

assumption. The present paper analyzes a retrospective data on ovarian cancer 

based on the assumption of multinomial-Dirichlet model. Empirical Bayes method 

is used to select the prior hyperparameters. Results are found to be logical and 

appealing. 

 

1. INTRODUCTION 

Medical data may be made available in a variety of ways. One such possibility 

includes data in the form of counts, say, for example, cases and controls where 

cases are diseased individuals and controls are those who are disease free at the 

time of taking observations but exposed to the risk of the same. The main 

objective in any such study is to examine the causes for the development of a 

disease so that the appropriate remedial measures and/or the treatments can be 

suggested accordingly. 

Case-control studies are generally conducted either retrospectively or 

prospectively (see, for example, Prentice and Pyke (1979), Abramson and 

Abramson (2001), Makkar (2009), etc.). In both the cases, the objective 

generally lies in drawing inferences about the odds ratio, a ratio that measures 

the odds of exposure for cases against controls. In fact, odds ratio is a relative 

measure of risk, which attempts to convey how much likely it is that someone 

exposed to the factor under study will develop the outcome as compared to 

someone who is not exposed (see, for example, Breslow (1996)). 

Odds ratio when calculated retrospectively appears to be more appropriate as 

people who have developed a disease may be more likely to remember the 
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causes than those without the disease although this may sometimes introduce a 

recall bias, a tendency of individuals to report the events in a manner that is 

different among the two groups. Thus it is more pertinent to devise means for 

reducing recall bias for the successful implementation of case-control study and 

this can be done by using some biological and non-biological markers to assess 

the amount of exposure in both the categories. Schlesselman (1982) and 

Rothman (1986), etc. are a few important references that provide the relevant 

details on these aspects. 

In genetic epidemiology, these markers are naturally inherent in the process in 

the form of genetic susceptibility and environmental exposure components. It is 

generally assumed that these factors are independent of each other at an 

individual level but these may be associated at the population level (see, for 

example, Modan et al. (2001)) because of their dependence on other factors such 

as age, ethnicity, past history of disease, etc. A review of the literature suggests 

that both prospective and retrospective studies are carried out with several 

merits or demerits of each such analysis (see, for example, Chatterjee and 

Carroll (2005), Mukherjee and Chatterjee (2008), etc.).  

Important early reference on covariate information on genetic epidemiology 

may include Cornfield (1956) where the author showed that the prospective 

odds ratio of a disease given a covariate is related to the retrospective odds ratio 

of a covariate given a disease in some or other way and, therefore, the former 

can be estimated from the latter with appropriately chosen case-control design. 

Among some important classical references, Modan et al. (2001) proposed a 

simple case-control analysis for drawing inferences on odds ratio in the study of 

ovarian cancer patients. Lee et al. (2010) is another important recent classical 

reference where the authors provided an easy-to-implement approach for 

analyzing case-control and case-only study designs under the assumption of 

gene-exposure independence and Hardy-Weinberg equilibrium assumption. 

On Bayesian front the work appears to be relatively meager although the new 

researches are going on very rapidly. Among the earlier important Bayesian 

references, Ashby et al. (1993) considered data on cases and controls and 

assumed beta-binomial modelling assumption to draw the desired inferences on 

odds ratio. Arora et al. (2011) provided a multivariate extension of the work 
done by Ashby et al. (1993). They used multinomial-Dirichlet modelling 

assumption and studied instead the effect of covariates in the bile acids of 

gallbladder diseases. An important problem with the Bayesian analysis given in 

the above references is the exact assessment of prior hyperparameters. The 

authors mostly used some logically adopted ad hoc mechanisms based on 

sensitivity analysis to recommend for the appropriate choices of prior 

hyperparameters.  

Our proposed plan attempts to use multinomial-Dirichlet modelling assumption 

and provides an empirical Bayes (EB) analysis with a view to obtain the 

complete inferences on relevant odds ratios and the gene-environment 
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interaction parameter. EB is an approach to inference in which the observations 

are used to specify the exact prior hyperparameters usually via the marginal 

distribution. Once the prior is specified, the inference proceeds in a standard 

Bayesian framework. This approach cannot be considered strictly in accordance 

with the Bayesian logic as the prior specification is usually done in the spirit of 

classical paradigm. We, however, advocate its use simply because it is easy and 

offers at least a systematic way of assessing the prior hyperparameters.  

The early references for the EB method include Robbins (1956), Casella (1985) 

among others. A detailed accountability of the method can be had from Carlin 

and Louis (2000), an important text on both Bayes and EB methods. The 

literature also includes references on the use of EB methods in the study of 

gene-environment problems. Chatterjee and Carroll (2005) is perhaps the first 

reference where the authors used a semi-parametric approach and worked out 

for maximum likelihood estimates in a case-control design involving both 

genetic and environmental components but treating the two to be independent. 

The approach is semi-parametric in the sense that it considers the distribution of 

environmental factors to be completely non-parametric. The method given by 

Chatterjee and Carroll (2005) is definitely advantageous but complicated, in 
general, to implement. Xu et al. (2013) is another reference where author 

worked parallel to Chatterjee and Carroll (2005). Mukherjee and Chatterjee 

(2008) extended the work of Chatterjee and Carroll (2005) by allowing 

dependence structure between genetic and environmental components with a 

trade off between bias and efficiency. The authors considered a weighted 

estimator of interaction parameter which was motivated by the expression for 

the posterior mean obtained in a conjugate analysis under a normal-normal 
modelling assumption. 

The plan of the paper is as follows. The next section provides the necessary 

modelling formulation and other related inferential details for the proposed 

Bayesian implementation based on multinomial-Dirichlet modelling assumption. 

A separate subsection details the selection of relevant prior hyperparameters 

using EB method. The section also provides a separate subsection on a simple 

case-control design involving 2 2 ( 1)l× × +  setup that fits the Dirichlet-

multinomial formulation given earlier in the Section. This subsection finally 

mentions a few important characteristics relevant to 2 2 ( 1)l× × +  setup that 

may be required for the latter inferences. Section 3 provides the description of a 

data set based on case-control study of ovarian cancer patients in Israel. This 

data set reports observations on genetic and environmental components besides 

a few usual characteristics of the patients. Due to confidentiality, we however 

considered a redesigned version of the data set initially reported by Modan et al. 
(2001) (see, for example, Chatterjee and Carroll (2005)). The Section also 

provides the numerical illustration based on the discussion given in Section 2. 

Finally, a brief conclusion is given at the end. 
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2. MODELLING FORMULATION AND THE RELEVANT 

INFERENTIAL DETAILS 

To begin with let us consider to obtain inferences from data 1= ( ,...., )kx xx  

categorized in k  categories with unknown probability for the category i  as 

, = 1,...,ip i k . If =ix nΣ , this can be represented by a multinomial probability 

law x ~ multinomial ( ,p)n , 1p = ( ,..., )kp p , with probability function given by,  

1 2
1 2(x | p) . ... , 0, = 1,..., .

xx x
k

k if p p p p i k∝ ≥                (1) 

It is well known that for multinomial parameters, a conjugate prior is Dirichlet 

distribution with probability density function given by,  
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Dirichlet prior offers a conjugate family for multinomial likelihood and, as such, 

the family is quite flexible and rich and results in computationally easy 

inferences. However, the most crucial thing with the Dirichlet prior is the choice 

of its hyperparameters because different choices may result in different shapes 

of the model and hence different a priori information. This may, in turn, lead to 

different inferential developments. A systematic discussion on the choice of 

hyperparameters is beyond the scope of this paper. The interested readers may 

refer to Arora et al. (2011) for a simple strategy based on systematic choices 

(see also Gupta and Upadhyay (2013)). A strategy based on subjective 

elicitation of prior hyperparameters using quantile estimates with the help of 

past data can be had from Gupta and Upadhyay (2013). We shall not go into the 

details of various strategies rather focus on the present problem using a simple 

EB formulation. 

Combining (1) with (2) via Bayes’ theorem yields the posterior distribution that 

can be specified up to proportionality as  

 
1
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( | , ) , 0, = 1.p x λ
k

x ki i
i i i i

i

h p p p
λ

Σ
+ −
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It can be seen that (3) again turns out to be the Dirichlet distribution with 

updated parameters 1 1( ,..., )k kx xλ λ+ + . The advantage with the Dirichlet model 

is that all the marginal posteriors can be reduced to beta distribution giving 

routine implementation of various inferential developments at least for some 

standard loss functions. 

2.1  Empirical Bayes Technique for Selection of Prior Hyperparameters 

The EB approach traditionally uses the prior density that maximizes the 

marginal probability of the observed data, integrating out with respect to the 

prior distribution of the parameters. For prior hyperparameter specification, one 

can, however, proceed parallel to the classical spirit of maximizing the 

likelihood function but with reference to the prior distribution. Thus, given a set 

of observed multinomial data D  = ( 1,..., kx x ), the parameters of the multinomial 

distribution can be easily obtained as the estimates of probabilities of cell counts 

( 1
ˆ ˆ,..., kp p ). Now the parameters of the Dirichlet distribution, which is the prior 

for multinomial parameters, can be obtained by maximizing the logarithm of 

( )g λ  where ( )g λ  is the form (2) obtained after replacing ip  with ˆ
ip , 

= 1,2,...,i k . The logarithm of ( )g λ  can be given as  

(λ) = log (λ)G g  

1=1
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−
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ˆ= log log ( ) ( 1)log .i k i i

i i i

pΓ λ Γ λ λ
 

− + − 
 
∑ ∑ ∑       (4) 

There are a number of methods for numerically maximizing this objective 

function (λ)G  as there is no closed form solution for the same. A detailed 

survey for various methods can be found in Lwin and Maritz (1989), Minka 

(2000), etc. Moreover, it was noted that the Dirichlet distribution is a special 

case of a larger class of distribution called the exponential family and, therefore, 

the log-likelihood function of data drawn from this distribution is convex in λ . 

This, in turn, guarantees a unique optimum (see Minka (2000)). The component 

wise gradient of G  can be given as  

ˆ( ) = = ( ) ( ) log ,k i k k

k i

G
G pξ λ ξ λ

λ

∂
∇ − +

∂
∑                                 (5) 

where (.) = log (.) / (.)d dξ Γ  is the digamma function. 

Of the various methods discussed in the literature, perhaps the one given by 

Minka (2000) is straightforward. The author provides a convergent fixed point 
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iteration technique for estimating the parameters. The idea behind this is to 

guess an initial value of λ , find a function that bounds (λ)G  from below which 

is tight at λ , and then to optimize this function to arrive at a new guess at λ . 

There are many inequalities associated to the ratio 1( )

( )

t

t

Γ λ

Γ λ
+ , where 1t tλ λ+ ≥  

and t denotes the iteration number, which have been extensively studied by 

many mathematicians (see, for example, Guo and Qi (1976), Dragomir et al. 

(1999), etc.). A commonly cited one is,  

1 1( ) ( )exp(( ) ( )),t t t t tΓ λ Γ λ λ λ ξ λ+ +≥ −  

which leads to a lower bound on the log likelihood, (λ)G , as  

ˆ(λ) ( ) log ( ) log ,i i t i i i

i i i i

G p Cλ ξ λ Γ λ λ
   

≥ − + +   
   
∑ ∑ ∑ ∑  

where C  is a constant with respect to λ . Now this expression can be 

maximized by setting the gradient (5) to zero and solving for λ . The updating 

step is given by,  

1
1

ˆ( ) = ( ) log ,k t i t k

i

pλ ξ ξ λ−
+

  
+   

  
∑  

where the digamma function ξ  can be inverted efficiently by using a Newton-

Raphson updating procedure to solve (.) = yξ . 

2.2 A Simple Case-Control Structure and A Few Associated Characteristics 

To begin with let us consider a structure involving n (= 0n  + 1n ) individuals as 

reported in Table 1 in the form of counts. These counts are represented as DGEr , 

where D  and G  are binary variables taking values either 0 or 1 and E is a 

polytomous variable taking values 0,1,..., l  for each combination of D  and G . 

Table 1: Classification of a case-control structure with respect to disease 

status, gene status and environmental exposure 

 
= 0G  = 1G  

Total 
= 0E  1=E  … lE =  0=E  1=E  … lE =  

0=D  000r  001r  … lr00  010r  011r  
... lr01  0n  

1=D  100r  101r  
... lr10  110r  111r  

... lr11  1n  
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Obviously, the structure can be very well represented by a multinomial 

distribution with 0r ~ multinomial 0( , )n 0p  where 000 00 010 01= ( ,..., , ,..., )l lr r r r0r  

and 000 00 010 01= ( ,..., , ,..., )l lp p p p0p . Similarly, 1r ~ multinomial 1 ( , )n 1p  where 

100 10 110 11= ( ,..., , ,..., )l lr r r r1r  and 100 10 110 11= ( ,..., , ,..., )l lp p p p1p . The components 

of 0p  and 1p  are the corresponding cell probabilities, that is,  

0 0 0= / ,GE GEp r n for = 0,1; = 0,1,..., ,G E l  

1 1 1= / ,GE GEp r n for = 0,1; = 0,1,..., ,G E l  

where 0 0=GEr nΣ  and 1 1=GEr nΣ . We consider Dirichlet priors ( | )g 0p a  and 

( | )g 1p b  for the corresponding cell probabilities 

000 00 010 01= ( ,..., , ,..., )l lp p p p0p  and 100 10 110 11= ( ,..., , ,..., ),l lp p p p1p  

respectively, where 0 1 2 1= ( , ,..., )la a a +a  and 0 1 2 1= ( , ,..., )lb b b +b  are the 

hyperparameters. Combining likelihoods and priors via Bayes theorem, we get 

the Dirichlet posteriors ( | , )h 0 0p r a  and ( | , )h 1 1p r b  with updated parameters 

( )+0r a  and ( ),+1r b  respectively, and because of being available in closed 

forms, these can be easily generated by a number of techniques (see, for 

example, Devroye (1986)). An important and easy procedure for generating 

from Dirichlet distribution can be managed through generation from gamma 

variates. 

Let 10 000 10 00 100= /i i
i

OR p p p p  denotes the odds ratio associated with =E i  for 

non-susceptible subjects ( = 0)G , 01 000 110 010 100= /OR p p p p  denotes the odds 

ratio associated with G  for unexposed individuals ( = 0)E  and the odds ratio 

associated with = 1G  and =E i  compared to = 0G  and = 0E  are denoted by 

11 000 11 01 100= /i i
i

OR p p p p , = 1,...,i l . The measure of G E−  association in the 

control population at i th−  level of E  is, therefore, given by,  

000 01 00 010= ( ) / ( ), = 1,..., .GE i i
i

log p p p p i lθ          (6) 

An easy procedure for getting the sample based estimates of GE
i

θ  and other log 

odds ratios is straightforward. We simply need to simulate the values of 0p  and 

1p  from the posterior distributions and after substituting the generated v and 1p  

in the concerned relationships, we may obtain the corresponding samples from 

the posterior distributions of the same. These samples may be used to estimate 

the entire posterior distribution of the corresponding variate, say, using kernel 

density estimate or histogram, etc. One may also draw other desired features of 
interest in a routine manner. Suppose, for example, one is interested in the point 

estimate of GE
i

θ  and finds the estimated value close to zero. This means that G  

and =E i  are not dependent on each other in the control population. Contrary to 
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that if the estimated GE
i

θ  is non-zero, one may go a step ahead and calculate the 

multiplicative interaction parameter between G  and =E i  (see also Mukherjee 

and Chatterjee (2008)) given by,  

00 010 100 11 000 01 10 110= ( ) / ( ), = 1,..., .i i i i ip p p p p p p p i lψ              (7) 

(7) provides a measure of association between the gene and environmental 

component = , = 1,..., ,E i i l  and this may be the parameter where the interest 

often centers. Moreover, the measures of association and interaction as given in 

(6)-(7) are calculated fixing the base environmental exposure 0=E  although 

such measures can be obtained among any pairs of environmental exposure 

=E i  and =E j , 0,i j≠ ≠  provided the interest centres among different pairs 

and the cell frequencies are large enough to support such evaluations. 

A word of remark: the measures given in (6) - (7) at each level of E  may be 

mathematically correct but logically not always appealing. One may not be 

interested in evaluating the G E−  association or the multiplicative interaction 

parameter at each level of E  rather may prefer to obtain the overall EG −  

association or the interaction parameter. These may be obtained by combining 

all the categories of exposed individuals ( = , = 1,...,E i i l ) in to a single exposed 

category and then defining the corresponding parameters based on a 2 2 2× ×  

setup. This situation is a particular case of 2 2 ( 1)l× × +  design discussed above 

with =1l  and results when the environmental component is also treated as 

binary. Obviously, the odds ratios can be redefined as 10 000 101 001 100= /OR p p p p , 

01 000 110 010 100= /OR p p p p , 000 011 001 010= ( ) / ( )GE log p p p pθ  and the 

multiplicative interaction parameter as 001 010 100 111 000 011 101 110= ( ) / ( )p p p p p p p pψ  

for 2 2 2× ×  setup (see also Mukherjee et al. (2010)).  

3. DATA DESCRIPTION AND NUMERICAL ILLUSTRATION 

We consider a partially real and partially simulated data set related to ovarian 

cancer study among Jewish women in Israel which was taken from the web page 

of Chatterjee and Carroll (2005). The necessary details can be had from 

http://dceg.cancer.gov/people/ Chatterjee Nilanjan.html under the software link 

(see also Gupta and Upadhyay (2013)). This data set consists of real data values 

on disease status, D, and non-genetic co-factors, Y . For reasons of privacy, 
however, the real genetic data are not made available publicly. Instead, the data 

consist of simulated genetic data, G, generated using the conditional distribution 

of [ | , ]G D Y  as specified by the parameter estimates obtained from the real data 

(see Chatterjee and Carroll (2005) for details). 

In spite of the fact that multiparity and use of oral contraceptive (OC ) reduce 

the risk of ovarian cancer in women (see, for example, Modan et al. (2001)), we 

propose to study the affect of these factors on women with BRCA 1 and/or 

BRCA 2 mutation as well. The data set contains 747 controls and 832 cases of 
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women who underwent mutation analysis. The data set, referred to as the case-

control data, is given in Table 2 for a ready reference. 

For OC  use, = 0E  corresponds to those subjects who never used OC . =E i  

corresponds to those who used OC  up to 3 years, from 3 years to 6 years and 

for more than 6 years depending on whether = 1,2,i  and 3, respectively. 

Similarly, for parity, = 0E  corresponds to women who have no children, =E i  

corresponds to 1 - 3 children, 3 - 6 children, and more than 6 children 

accordingly as = 1,2,i  and 3, respectively. Obviously, the data set given in 

Table 2 represents a 2 2 4× ×  case-control design and our primary focus 

includes the analysis of the same data set to get the desired inferences. 

Table 2: Classification of case-control data with respect to disease status, 

genetic susceptibility and environmental exposure 

 OC  Use 

 
0=G  1=G  

Total 
0=E  1=E  2=E  3=E  0=E  1=E  2=E  3=E  

= 0D  577 86 32 40 9 1 1 1 747 

1=D  494 7 15 16 184 34 7 15 832 

Parity 

0=D  42 506 155 32 1 8 2 1 747 

1=D  68 373 116 35 20 188 30 2 832 

The data set given in Table 2 can be easily converted in the form of a 2 2 2× ×  

design by combining cells with non-zero E  in to a single cell, say, = 1E . 

Therefore, in this case, when OC  use is considered as the environmental 

exposure, there are 586 unexposed individuals among controls. That is, among 

747 controls, 586 are those who are not using OC  whereas 161 individuals are 

using the same. While among cases, 678 are unexposed to environment and 154 

are exposed. Similarly, when parity is considered as the environmental 

exposure, only 43 individuals are unexposed among controls while 704 are 

exposed. Among cases the number of unexposed individuals is 88 while that of 

exposed is 744. It is to be noted that the 2 2 2× ×  design has an advantage in the 

sense that various cell frequencies become appreciably large and, as such, the 

conclusions can be more readily relied upon. 

To begin with the analysis of the data given in Table 2, we first obtained the 

maximum likelihood estimates of Dirichlet hyperparameters for 2 2 4× ×  setup 

by the method given in subsection 2.1. These estimates are 

= (139.69,13.45,5.02,8.75,2.67,0.77,0.51,0.52)aɶ  and 

= (99.84,11.88,4.36,4.02,38.21,6.44,1.93,4.91)bɶ  when OC  use is considered 

as the environmental exposure. Similarly, the maximum likelihood estimates 
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corresponding to parity as the environmental exposure are obtained as 

= (10.78,116.63,30.01,8.75,0.26,2.86,1.29,1.01)aɶ  and 

= (9.01,96.34,27.09,5.43,3.34,19.27,6.34,4.79)bɶ . Based on these estimates of 

hyperparameters, the estimated posterior means of various cell probabilities are 

evaluated and presented in Table 3. The estimates are based on 5000 posterior 

samples. The bracketed values in the table show the corresponding estimated 
posterior standard deviations.  

Table 3: Estimated sample based posterior means and the corresponding 

standard deviations of different cell probabilities based on EB 

procedure 

Cell 

probabilities 
OC use Parity 

Cell 

probabilities 
OC  use Parity 

000p  
0.7812 0.0572 

100p  
0.5928 0.0757 

(0.0171) (0.0048) (0.0172) (0.0035) 

001p  
0.1081 0.6786 

101p  
0.0784 0.4649 

(0.0052) (0.0151) (0.0041) (0.0144) 

002p  
0.0402 0.2013 

102p  
0.0191 0.1411 

(0.0046) (0.0041) (0.0033) (0.0025) 

003p  
0.0528 0.0442 

103p  
0.0198 0.0439 

((0.0048) (0.0046) (0.0033) (0.0037) 

010p  
0.0126 0.0013 

110p  
0.2214 0.0228 

(0.0032) (0.0012) (0.0034) (0.0034) 

011p  
0.0019 0.0117 

111p  
0.0401 0.2045 

(0.0014) (0.0031) (0.0039) (0.0029) 

012p  
0.0016 0.0035 

112p  
0.0088 0.0356 

(0.0013) (0.0019) (0.0025) (0.0036) 

013p  
0.0016 0.0022 

113p  
0.0196 0.0115 

(0.0013) (0.0015) (0.0033) (0.0028) 

We also obtained the same results for 2 2 2× ×  setup. The maximum likelihood 

estimates corresponding to OC  use are = (131.68,36.26,2.54,1.125)aɶ  and 

= (103.62,24.51,34.76,8.72)bɶ  and same for the parity are 

= (10.11,157.94,0.59,2.98)aɶ  and = (14.26,107.12,5.58,44.64)bɶ . The posterior 

probabilities are also obtained using these sets of hyperparameters but we are 

not showing the results due to the fact that they are not conveying any additional 
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messages. Instead we present the results for log odds ratios and interaction 

parameters, the quantities of interest to epidemiologists, corresponding to 

2 2 2× ×  design. These quantities have already been defined in subsection 2.2. 

The estimates of log odds ratios and other interactive parameters for 2 2 2× ×  

and 2 2 4× ×  setup using the EB estimates of various cell probabilities are 

shown in Table 4 and 5 respectively. The bracketed values once again represent 

corresponding standard deviations. 

Table 4: Posterior estimates of log odds ratio and other association 

parameters for 2 2 2× ×  setup 

Parameters OC  use Parity 

GEθ  
0.1543 -0.3576 

(0.6303) (0.9599) 

10log( )OR  
-0.2921 -0.7585 

(0.1350) (0.1918) 

01log( )OR  
3.1474 2.5699 

(0.3098) (0.9572) 

log( )ψ  
0.2136 0.7263 

(0.6506) (0.9979) 

 

It can be seen from the results that the value of GEθ  clearly conveys the message 

that the genetic and environmental components are associated with each other. 

Odds ratios for non-susceptible subjects, that is, when = 0G , are negative 

which means that disease and OC  use/parity are inversely proportional to each 

other. The risk of ovarian cancer decreases with longer duration of OC  use and 

increasing parity. The positive values of odds ratios 01log( )OR  take us towards 

the conclusion that the genes BRCA1/2 increase the risk of ovarian cancer. Both 

the interaction parameters are again positive representing that the interaction of 

genes and environmental components have a positive role in the occurrence of 

ovarian cancer although the risk is reduced in comparison to the situation when 

the environmental components are absent. 

Observing Table 5 we can easily conclude that , = 1,...,3,GE
i

iθ  is again showing 

association for both OC  use and parity discarding the assumption of 

independence between genetic susceptibility and environmental exposures, an 

assumption that earlier authors used to take. 10( ), = 1,...,3,
i

log OR i  is as usual 

coming out to be negative suggesting that for non-susceptible subjects both OC  

use and parity reduce the risk of ovarian cancer and this risk mostly decreases 
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for higher levels of OC  use and/or parity. The values of 01log( )OR  again help 

us to reach the conclusion that the patients with BRCA1/2 mutation are having 

high risk of developing ovarian cancer in control population. 

Table 5: Posterior estimates of log odds ratio and other association 

parameters for 422 ××  setup 

Posterior 

estimates 
OC  use Parity 

Posterior 

estimates 
OC  use Parity 

1
GEθ  

-0.0624 0.0845 

10
3

log( )OR  
-0.7398 -0.4152 

(0.9158) (1.0868) (0.2689) (0.2881) 

2
GEθ  

0.4299 -0.0460 

01log( )OR  
3.1768 2.9454 

(1.0113) (1.1887) (0.3147) (1.0945) 

3
GEθ  

0.3520 0.8655 

1log( )ψ  
0.3659 0.3247 

(0.9851) (1.3718) (0.9330) (1.1298) 

10
1

log( )OR  
-0.0389 -0.6715 

2log( )ψ  
-0.2447 -0.1033 

(0.1532) (0.1833) (1.1088) (1.2561) 

10
2

log( )OR  
-0.4801 -0.6518 

3log( )ψ  
0.6475 -1.4905 

(0.2888) (0.2027) (1.0516) (1.4973) 

The values of interaction parameters are conveying a very important message. 

The interaction between BRCA 1/2 and OC  use definitely increases the risk of 

ovarian cancer, however, this risk is reduced as compared to the situation when 

BRCA1/2 was acting alone. The negative value of 2log( )ψ  is somewhat odd 

perhaps due to the small cell frequencies in 2 2 4× ×  setup. Coming to the 

interaction between BRCA1/2 and parity we can see that the risk decreases as 

the parity increases. 

4. CONCLUSION 

The paper is a successful attempt to study the interaction between genetic 

susceptibility and environmental exposure components as important causes for 

the development of any disease based on the assumption of multinomial-

Dirichlet modelling. Other parameters involved in the modelling process are 

also estimated and their estimated standard deviations are obtained. Throughout 

we have used sample based approaches because of their apparent advantages in 
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the sense that every desired inference can be routinely obtained. This is 

otherwise difficult especially when one is concerned with functions of the 

parameters like odds ratio, multiplicative interaction, etc.  

The second important finding relates to assessing the values of hyperparameters 
of the Dirichlet prior. The methodology given in this paper is straightforward 

and use data itself to estimate the prior hyperparameters. This approach is 

certainly less troublesome and perhaps may be enjoyed by those applied 

statisticians who do not want to invite the complications in selecting the 

hyperparameters. 
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