Aligarh Journal of Statistics

Vol. 33 (2013), 83-97

APPLICATION OF CONCOMITANTS OF ORDER STATISTICS OF INDEPENDENT NON-IDENTICALLY DISTRIBUTED BIVARIATE NORMAL RANDOM VARIABLES IN ESTIMATION

T. G. Veena and P. Yageen Thomas

ABSTRACT

In this paper, we obtain the means, variances and covariances of order statistics arising from independent non-identically distributed bivariate normal random variables. A method of estimation of common parameters involved in several bivariate normal distributions using concomitants of order statistics is also discussed.

1. INTRODUCTION

It is well known that order statistics are very useful in the estimation of location and scale parameters of a distribution. For a survey of literature on the applications of order statistics of *iid* random variables in estimating the location and scale parameters of distributions, see David and Nagaraja (2003) and Balakrishnan and Cohen (1991). Vaughan and Venables (1972) have first discussed about the distribution theory of order statistics of *inid* random variables. For some further results on the order statistics of *inid* random variables, see Beg (1991) and Samuel and Thomas (1998). Sajeevkumar and Thomas (2005) and Thomas and Sajeevkumar (2005) have illustrated some applications of order statistics of independent non-identically distributed random variables in the estimation of common location and scale parameters of several distributions.

In a bivariate setup, study of concomitants of order statistics of *iid* bivariate random variables has gained momentum in a theoretical perspective as well as in terms of its applications. For details, see Beg and Ahsanullah (2007), Chacko (2007), David and Nagaraja (1998) and Nagaraja and David (1994). However as in the case of order statistics of *inid* random variables, not much works have been initiated on the theory and applications of concomitants of order statistics of *inid* random variables. Eryilmaz (2005) introduced the general expression for the *cdf* cdf of concomitants of order statistics of *inid* bivariate random variables. Veena and Thomas (2011) have obtained the general expression for the *pdf* of concomitants of order statistics of *inid* random variables and the means, variances and covariances of order statistics arising from independent non-identically distributed bivariate Pareto distributions. They have also described a method of estimation of common parameters involved in several *Veena T. G. and P. Yageen Thomas*
variables. Veena and Thomas (2011) have obtained the general expression for
the *pdf* of concomitants of order statistics of *inid* random variables and the
means, variances and covarian $(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n)$ are *n* independent bivariate random variables with (X_i, Y_i) having an absolutely continuous bivariate distribution with *pdf* $f_i(X_i, Y_i)$, $i = 1, 2, \dots, n$. If we order X_1, X_2, \dots, X_n involved in the above bivariate collection of random variables as $X_{1:n}$, $X_{2:n}$, $X_{n:n}$, then the accompanying *Y* value of $X_{r,n}$ in the ordered pair from which $X_{r,n}$ is taken is called the concomitant of the $r -$ th order statistic and is denoted by $Y_{[r:n]}$. If we write $F_{X_i}(x)$ to denote the marginal distribution function of X_i of the bivariate distribution function of the random variable (X_i, Y_i) , $i = 1, 2, ..., n$ then from Veena and Thomas (2011), we can write the *pdf* $f_{Y_{[r,n]}}(y)$ of $Y_{[r,n]}$ as $f_r(X_r, Y_r)$, $i = 1, 2, ..., n$. If we order $X_1, X_2, ..., X_n$ involved in the above
bivariate collection of random variables as $X_{1n}, X_{2n}, ..., X_{nn}$, then the
accompanying *Y* value of X_{rn} in the ordered pair from which X_{rn} is

$$
f_{Y_{[r:n]}}(y) = \frac{1}{(r-1)!(n-r)!} \int_{-\infty}^{\infty} Per \begin{bmatrix} F_{X_1}(x) & 1 - F_{X_1}(x) & f_1(x, y) \\ \vdots & \vdots & \vdots \\ F_{X_n}(x) & \underbrace{1 - F_{X_n}(x)}_{n-r} & \underbrace{f_n(x, y)}_{n} \end{bmatrix} dx \quad (1)
$$

where per *A* is meant to denote the permanent of a square matrix *A* which is just like the determinant of *A* except that in per *A* all terms in its expansion are taken with positive sign and if a symbol *k* is marked below a column vector *a* in per *A* then it means that *A* includes *k* copies of *a* .

and *Y*[*s*:*n*] has been developed by Veena and Thomas (2011) and is given by,

$$
f_{Y_{[r,s:n]}}(y,z) = \frac{1}{(r-1)!(s-r-1)!(n-s)!}I
$$

where

$$
I = \iint_{u\n(2)
$$

In this work our main interest lies in establishing an application of the above theory of distribution of concomitants of order statistics of *inid* random variables in the estimation of common parameters involved in several bivariate normal distributions.

In section 2, we have considered the problem of estimation of the common correlation coefficient ... (ie., when \ldots = ..., $i = 1, 2, \ldots, n$) involved in several bivariate normal distributions with different *ⁱ* 's using concomitants of *inid* normal random variables. In section 3, we consider concomitants of order statistics arising from several bivariate normal distributions with Application of concomitants of order statistics estimation 85

In this work our main interest lies in establishing an application of the above

heory of distribution of concomitants of order statistics of *inid* r values of the correlation coefficient. Further we illustrate an application of concomitants of order statistics of *inid* normal random variables in estimating the parameters \sim_2 and \uparrow_2 . Application of concomitants of order statistics estimation

In this work our main interest lies in establishing an application of the above

verivatives of inidd random

variables in the estimation of common param (*n*) the set of distribution of the extendinates x_i in the set of distribution of concomitants of order statistics variables in the estimation of concomitants of order statistics variables in the estimation of common p In section 2, we have considered the problem of
correlation coefficient ... (ie., when $\frac{1}{m_i} = \frac{1}{m_i}i = 1,2$
bivariate normal distributions with different \uparrow_i 's u
normal random variables. In section 3, we consist
s of estimation of the common
1,2,..., *n*) involved in several
's using concomitants of *inid*
nonsider concomitants of order
normal distributions with
..,*n*, but with different known
we illustrate an application of
rando bivariate normal distributions with different \uparrow ,'s using concomitants of *inid*
normal random variables. In section 3, we consider concomitants of order
statistics arising from several bivariate normal distributions w we consider concomitants of order

variate normal distributions with
 $i = 1, 2, ..., n$, but with different known

urther we illustrate an application of

normal random variables in estimating
 ION OF ...

In bivariate rando

2. ESTIMATION OF

$$
\frac{(2f\uparrow_{1}\uparrow_{2i})^{-1}}{\sqrt{1-\dots^{2}}}\exp\left\{\frac{-2^{-1}}{1-\dots^{2}}\left[\frac{(x-\sim_{1})^{2}}{\uparrow_{1}^{2}}-2\dots\frac{(x-\sim_{1})(y-\sim_{2i})}{\uparrow_{1}\uparrow_{2i}}+\frac{(y-\sim_{2i})^{2}}{\uparrow_{2i}^{2}}\right]\right\}
$$
(3)

Clearly the marginal distributions of X_i and Y_i are $N(\sim_1, \uparrow_1)$ and $N(\sim_2, \uparrow_2)$ function respectively of each of the X_i 's and $h_i(y|x)$ denote the conditional *pdf* of Y_i given $X_i = x$. Then we have,

Thus,
$$
u = r_1, \frac{1}{2} \ln \left(\frac{1}{2} \right) = \frac{1}{2} \ln \left(\frac{1}{2} \ln \left(\frac{1}{2} \right) = \frac{1}{2} \ln \left(\frac{1}{2} \ln \left(\frac{1}{2} \right) = \frac{1}{2} \ln \left(\frac{1}{2} \ln \left(\frac{1}{2} \right) = \frac{1}{2} \ln \left(\frac{1}{2} \ln \left(\frac{1}{2} \right) = \frac{1}{2} \ln \left(\frac{1}{2} \ln \left(\frac{1}{2} \right) = \frac{1}{2} \ln \left(\frac{1}{2} \ln \left(\frac{1}{2} \ln \left(\frac{1}{2} \right) \right) = \frac{1}{2} \ln \left(\frac{1}{2} \ln \left(\frac{1}{2} \ln \left(\frac{1}{2} \ln \left(\frac{1}{2} \right) \right) \right) = \frac{1}{2} \ln \left(\frac{1}{2} \right) \right) \right) \right) = \frac{1}{2} \ln \left(\frac{1}{
$$

We know that

$$
\int_{-\infty}^{\infty} yh_i(y \mid x) dy = -\frac{1}{2i} + \dots + \frac{1}{2i} \left(\frac{x - z_1}{\frac{1}{z_1}} \right).
$$

Hence,

Veena T. G. and P. Yageen Thomas
\n
$$
\int_{-\infty}^{\infty} yh_i(y \mid x) dy = -2i + ... + 2i \left(\frac{x - x_1}{1} \right).
$$
\n
\nce,
\n
$$
E[Y_{[r:n]}] = \frac{1}{n} \sum_{i} \left(-2i + ... + 2i \right) \left(-2i + ... + 2i \right) \left(-2i + ... \right)
$$
\n
\nre we write $\Gamma_{r:n}$ to denote the expected value of the r^{th} order statistic U_{rn}
\nng from a random sample of size *n* from $N(0,1)$.
\n
$$
E[Y_{[r:n]}^2] = \int_{0}^{\infty} y^2 f_{r-1}(y) dy
$$

where we write $\Gamma_{r:n}$ to denote the expected value of the r^{th} order statistic $U_{r:n}$

86
\n86
\n
$$
\text{Mean } P, \text{ Yageen Thomas}
$$
\n
$$
\int_{-\infty}^{\infty} yh_y(y|x)dy = -2x + ... + 2\left[\frac{x - z_1}{1 + \frac{1}{2}}\right]
$$
\nHence,
\n
$$
E[Y_{(pq)}] = \frac{1}{n} \sum_{i=1}^{n} (-2x + ... + 2x)^{n-1} = 0
$$
\n
$$
E[Y_{(pq)}] = \frac{1}{n} \sum_{i=1}^{n} (-2x + ... + 2x)^{n-1} = 0
$$
\n
$$
E[Y_{(pq)}] = \int_{-\infty}^{\infty} y^{2} f_{(pq)}(y)dy
$$
\n
$$
= \frac{1}{(r-1)!(n-r)!} \int_{-\infty}^{\infty} F(x) \left[1 - F(x) - f(x)\right]_{-\infty}^{\infty} y^{2}h_y(y|x)dy
$$
\n
$$
= \frac{1}{(r-1)!(n-r)!} \int_{-\infty}^{\infty} F(x) \left[1 - F(x) - f(x)\right]_{-\infty}^{\infty} y^{2}h_y(y|x)dy
$$
\nWe know that
\n
$$
\int_{-\infty}^{\infty} y^{2}h_y(y|x)dy = t \frac{1}{2}(1 - x^{2}) + \left[-2x + ... + 2x\right] \left[\frac{x - z_1}{1 + x}\right]_{-\infty}^{\infty} y^{2}h_y(y|x)dy
$$
\n
$$
= \left[x^{2} + x^{2} + x^{2} + \frac{1}{2}(1 - x^{2}) + \frac{1}{2}(1 - x^{2}) + 2x - x^{2} + \frac{1}{2}(1 - x^{2}) + \frac{1}{2}(1 -
$$

We know that

$$
\int_{-\infty}^{\infty} y^2 h_i(y \mid x) dy = \int_{2i}^{2} (1 - \dots^2) + \left[\left(\frac{x - x_1}{1} \right)^2 \right]^2
$$

$$
E\left[Y_{[r:n]}^{2}\right] = \frac{1}{n}\sum_{i} z_{2i}^{2} + \frac{1}{n}\sum_{i} \frac{z_{2i}}{z_{2i}}(1 - \dots^{2}) + 2\ldots r_{rn} \frac{1}{n}\sum_{i} z_{2i} \frac{z_{2i}}{z_{2i}} + r_{r, rn} \dots^{2} \frac{1}{n}\sum_{i} \frac{z_{2i}}{z_{2i}} \tag{6}
$$

$$
S_{r,r:n} = Var(U_{r:n}) = \Gamma_{r,r:n} - \Gamma_{r:n}^2.
$$

$$
\left[\frac{F(x)}{r-1} - \frac{1-F(x)}{r-1} - \frac{f(x)}{x} \right] \frac{y^2 h_n(y \mid x) dy}{(1-x)^2}
$$
\nWe know that\n
$$
\int_{-\infty}^{\infty} y^2 h_i(y \mid x) dy = \frac{1}{2} (1 - x^2) + \left[-2(1 - x^2) + 2x \right] \left[\frac{x - x_1}{1} \right]^2
$$
\nHence,\n
$$
E\left[Y_{[r,n]}^2 \right] = \frac{1}{n} \sum_i x^2 + \frac{1}{n} \sum_i \left(\frac{1}{2} (1 - x^2) + 2x \right) \left[\frac{1}{n} \sum_i x_i \right] + \left[\frac{1}{n} \sum_i x_i \right] \left(\frac{1}{n} \sum_i x_i \right] + \left[\frac{1}{n} \sum_i x_i \right] \left(\frac{1}{n} \sum_i x_i \right] \left(\frac{1}{n} \sum_i x_i \right) \left(\frac{1}{n}
$$

Application of concomitants of order statistics ……. estimation 87

blication of concomitants of order statistics

\n
$$
E\Big[Y_{[rn]}Y_{[sn]}\Big] = \frac{1}{(r-1)!(s-r-1)!(n-s)!} \int_{-\infty}^{\infty} \int_{x_1}^{\infty} PerIdx_2 dx_1,
$$
\nHere the matrix *I* is given by

\n
$$
\begin{bmatrix}\n\Gamma & \Gamma\n\end{bmatrix}
$$

where the matrix I is given by

Application of concomitants of order statistics estimation
\n
$$
E[Y_{[r,n]}Y_{[s,n]}] = \frac{1}{(r-1)!(s-r-1)!(n-s)!} \int_{-\infty}^{\infty} \int_{x_1}^{\infty} PerIdx_2 dx_1,
$$
\nwhere the matrix *I* is given by
\n
$$
\begin{bmatrix}\nF(x_1) & F(x_2) - F(x_1) & 1 - F(x_2) & f(x_1) \int_{-\infty}^{\infty} y_1 f_1(y_1 | x_1) dy_1 & f(x_2) \int_{-\infty}^{\infty} y_2 f_1(y_2 | x_2) dy_2 \\
\vdots & \vdots & \vdots & \vdots \\
F(x_1) & F(x_2) - F(x_1) & \frac{1 - F(x_2)}{s} & \frac{f(x_1) \int_{-\infty}^{\infty} y_1 f_1(y_1 | x_1) dy_1}{s} & \frac{f(x_2) \int_{-\infty}^{\infty} y_2 f_1(y_2 | x_2) dy_2}{s}\n\end{bmatrix}
$$
\nNow if we write $\Gamma_{r,s,n} = E(U_{r,n}U_{s,n})$ then,
\n
$$
E[Y_{[r,n]}Y_{[s,n]}] = \frac{1}{n(n-1)} \sum_{i \neq j} (\gamma_{2i} \gamma_{2j} + ... \gamma_{2i} \gamma_{2i} \Gamma_{r,n} + ... \gamma_{2j} \gamma_{2i} \Gamma_{s,n} + ...^2 \gamma_{2i} \gamma_{2i} \Gamma_{r,s,n})
$$
\n
$$
Cov[Y_{[r,n]}Y_{[s,n]}] = E[Y_{[r,n]}Y_{[s,n]}] - E[Y_{[r,n]}]E[Y_{[s,n]}]
$$
\n
$$
= \frac{1}{n(n-1)} ...^2 S_{r,s,n} \sum_{i \neq j} \gamma_{2i} \Gamma_{2i} - \frac{1}{n^2(n-1)} \sum_{i \neq j} [(-\gamma_{2i} - \gamma_{2j}) + ... (-\gamma_{2i} - \gamma_{2j}) \Gamma_{r,n}]
$$

\n
$$
\mathcal{E}\left[Y_{(rn)}Y_{(sn)}\right] = \frac{1}{(r-1)!(s-r-1)!(n-s)!} \int_{-\infty}^{\infty} \int_{x}^{\infty} \text{PerIdx}_2 dx_1,
$$
\n

\n\n The matrix *I* is given by\n

\n\n $F(x_1) F(x_2) - F(x_1) 1 - F(x_2) f(x_1) \int_{-\infty}^{\infty} y_1 f_1(y_1|x_1) dy_1 f(x_2) \int_{-\infty}^{\infty} y_2 f_1(y_2|x_2) dy_2$ \n

\n\n ∴ $\frac{F(x_1)}{r-1} \left[\frac{F(x_2) - F(x_1)}{s-r-1} \cdot \frac{1-F(x_2)}{s-s} \cdot \frac{f(x_1) \int_{-\infty}^{\infty} y_1 f_1(y_1|x_1) dy_1 f(x_2) \int_{-\infty}^{\infty} y_2 f_1(y_2|x_2) dy_2 \right]$ \n

\n\n ∴ i if we write\n $\Gamma_{r, x; n} = E(U_{rn}U_{kn})$ \n

\n\n The matrix $F_{r, x; n} = E(U_{rn}U_{kn})$ then,\n

\n\n The matrix $\Gamma_{r, x; n} = E(U_{rn}U_{kn})$ then\n

\n\n The matrix $\Gamma_{r, x; n} = E(U_{rn}U_{kn})$ then\n

\n\n The matrix $\Gamma_{r, x; n} = E(U_{rn}U_{kn})$ then\n

\n\n The matrix $\Gamma_{r, x; n} = E(U_{rn}U_{kn})$.\n

\n\n The matrix $\Gamma_{r, x; n} = E(U_{rn}U_{kn})$.\n

\n\n The matrix $\Gamma_{r, x; n} = E(U_{rn}U_{kn}) - E[X_{rn}U_{kn}] = E[X_{rn}U_{kn}] - E[X_{rn}U_{kn}]$.\n

\n\n The matrix $\Gamma_{r, x; n} = \frac{1}{n(n-1)} \sum_{i \neq j} \left[x_{$

Consider the units of bivariate sample in which measurement of the *X* variate can be done easily where as a measurement of *Y* is not so easy or economic. In this case we order the *X* observations and make measurements only on the Extraction of the state of the state of Y_{1s} *x* $F(x_1) - F(x_2)$ $f(x_1)$ $f(x_2)$ $f(x_1)$ $f(x_2)$ $f(x_2)$ $f(x_2)$ $f(x_2)$ $f(x_2)$

Now if we write $\Gamma_{r,sm} = E(U_{rn}U_{snr})$ then,
 $E[Y_{1rn}Y_{1sn1}] = \frac{1}{n(n-1)} \sum_{i \neq j} (-x^2z_1 + ... -2x^$ $\begin{aligned}\n\left[\begin{array}{ll}\n\vdots & \vdots & \vdots \\
\frac{F(x_i)}{r^{-1}} & \frac{F(x_2) - F(x_i)}{r^{-1}} & \frac{1 - F(x_2)}{r^{-1}} & \frac{f(x_i)}{r} \int_{-\infty}^{\infty} f(x_i) \left[x_i \lambda \delta_i \right] & f(x_2) \int_{-\infty}^{\infty} y_i f_{i}(y_1 | x_2) \delta_i \right] \\
\text{Now if we write } & \frac{F}{r_{i,c}} = E(U_{i,\alpha} V_{i,ca}) \text{ then,} \\
E\left[Y_{i,c|Y_{i,c|1}}\right] = \frac{1}{n$ $z_{2i} = z_2, \forall i = 1, 2, ..., n$ and consider the transformation $Y_i^* = Y_i - z_2$. Then the $\begin{aligned}\n&\sum_{i=1}^{n} y_{2} f_{n} (y_{2} | x_{2}) dy_{2} \\
&\sum_{i=1}^{n} y_{2} f_{n} (y_{2} | x_{2}) \Gamma_{r,n} \\
&= \Gamma_{r,n} \Gamma_{r$ $=\frac{1}{n(n-1)}$ $\int_{0}^{\infty} S_{r,s,n} \sum_{i \neq j} \int_{2i}^{i} \frac{1}{2i} \int_{2j}^{i} - \frac{1}{n^2(n-1)} \sum_{i \leq j} [(\frac{1}{2i} - \frac{1}{2j}) + \dots (\frac{1}{2i} - \frac{1}{2j}) \Gamma_{r,n}]$
 $\times [(\frac{1}{2i} - \frac{1}{2j}) + \dots (\frac{1}{2i} - \frac{1}{2j}) \Gamma_{s,n}]$

Consider the units of bivariate sampl expectation and variance-covariance matrix which can be expressed in the form if we write $\Gamma_{r,\text{ion}} = E(U_{rs}U_{sn})$ then,
 $\left[\frac{1}{Y_{r,\text{off}}Y_{r,\text{off}}}\right] = \frac{1}{n(n-1)}\sum_{r,r}(-\frac{1}{2}x_{2r}) + \cdots - \frac{1}{2}x_{2r}T_{rs} + \cdots - \frac{1}{2}x_{2r}T_{2r} + \cdots - \frac{1}{2}x_{2r}T_{2r}T_{rsn})$
 $Cov\left[Y_{r,\text{on}}Y_{r,\text{off}}\right] = E\left[Y_{r,\text{on}}Y_{r,\text{off}}\right] - E\$ *n* we write $\Gamma_{r,xx} = E(U_{rx}U_{rx})$ then,
 $Y_{(rs)}Y_{(rs)} = \frac{1}{n(n-1)}\sum_{i\neq j}(-x_i-z_j+\ldots-z_1)^{\frac{1}{2}}\sum_{r,n}(-x_i-z_j+\ldots-z_1)^{\frac{1}{2}}\sum_{r,n}(-x_i+\ldots+z_1)^{\frac{1}{2}}\sum_{r,n}(-x_i-x_i)^{\frac{1}{2}}\sum_{r,n}(-x_i-x_i)^{\frac{1}{2}}\sum_{r,n}(-x_i-x_i)^{\frac{1}{2}}\sum_{r,n}(-x_i-x_i)^{\frac{1}{2}}\sum_{r,n}($ this case we order the *X* observations and m:

concomitants $Y_{[c+1:n]},..., Y_{[n-c:n]}$. Now based on this

estimates based on the available concomitant
 $z_{2i} = z_2, \forall i = 1, 2,...,n$ and consider the transfor

corresponding vector of $E_{r,n}[Y_{s,n}]$ = $E[Y_{t_{r,n}}|Y_{s,n}]$ = $E[Y_{t_{r,n}}]E[Y_{t_{r,n}}]$
 $\frac{1}{\mu(n-1)}...^{2}S_{r,s,n}\sum_{i\neq j} \frac{1}{i_{2i}}\frac{1}{i_{2j}} - \frac{1}{n^{2}(n-1)}\sum_{i\leq j}[(\sim_{2i}-\sim_{2i})+(\sim_{2i}-\sim_{2i})+(\sim_{2i}-\sim_{2i})+\sim_{2i}]\times [(0,1)-\sim_{2i}]\times [(0,1)-\sim_{2i}]\times [(0,1)-\sim_{2i}]\times [(0,1)-\sim_{$ *i* $\mathcal{L}_{\text{free}}[f_{\text{real}}] - \frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{i=2}^{n} \sum_{j}^{n} \sum_{j}$ $z_{2i} = z_2, \forall i = 1, 2, ..., n$ and consider the transformation Y_i
corresponding vector of transformed concomitants of rec
expectation and variance-covariance matrix which can be ex
 $E[Y_{[n,c]}^*] = ...$ s,
where
 $S = \frac{1}{n} \sum_{i=1}^n \up$ inding vector of transformed concomitants

on and variance-covariance matrix which ca
 $\left[\sum_{n, c_1}^{*} \right] = ...$ S,
 $\frac{1}{n} \sum_{i=1}^{n} \uparrow_{2i} (\Gamma_{c+1:n}, \Gamma_{c+2:n}, ..., \Gamma_{n-c:n})$
 $\left[\sum_{n, c_1}^{*} \right] = (1 - ...^2) \frac{1}{n} \sum_{i=1}^{n} \uparrow_{2i}^{2} I + ...^$ $(z_2 - z_1) + ... (t_{2i} - t_{2j})r_{sn}$
its of bivariate sample in which measurem
iily where as a measurement of Y is not so
der the X observations and make measure
of the X observations and make measure
1 on the available concomita anding vector of transformed concon and variance-covariance matrix
 $\begin{aligned}\n\int_{[n,c]}^{\infty} \left[\int_{[n,c]}^{n} \mathbf{1}_{2i}(\mathbf{r}_{c+1:n}, \mathbf{r}_{c+2:n}, ..., \mathbf{r}_{n-c:n}) \right] \\
&= (1 - ...^2) \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{2i}^2 I + ...^2 H, \n\end{aligned}$ $\frac{1}{2} \left[(c_{2j} - a_{2j}) + ... (t_{2j} - t_{2j}) \right]$

sider the units of bivariate sample in which measurement of the *X* variate

be done easily where as a measurement of *Y* is not so easy or economic. In

case we order the *X* ob ² $S_{r,s,n}$ $\sum_{i \in J} T_{2i} T_{2j} - \frac{1}{n^2(n-1)} \sum_{i \in J} [(\frac{r_{2i} - r_{2j}}{n} + ...(\frac{r_{2i} - r_{2j}}{n} + \frac{r_{2i} - r_{2j}}{n}) + ...(\frac{r_{2i} - r_{2j}}{n}) + \frac{1}{n^2(n-1)}]$

of bivariate sample in which measurement of the *X* varia

where as a measure (8)

$$
E\left[Y_{[n,c]}^*\right] = \dots \mathbf{S},\tag{7}
$$

$$
S = \frac{1}{n} \sum_{i=1}^{n} \Upsilon_{2i} (r_{c+1:n}, r_{c+2:n}, ..., r_{n-c:n})'
$$

$$
D\left[Y_{\left(n,c\right)}^{*}\right] = \left(1 - \dots^{2}\right) \frac{1}{n} \sum_{i=1}^{n} \uparrow \frac{2}{2i} I + \dots^{2} H,
$$
\n⁽⁸⁾

Mean T. G. and P. Yageen Thomas
\nwhere *I* is the identity matrix of order
$$
(n-c) \times (n-c)
$$
 and $H = ||h_{rs}||$,
\n
$$
h_{rr} = \frac{1}{n} \sum_{i} \frac{1}{2} \sum_{r, r, n} \left(\frac{1}{2} \sum_{i < j} (1 - \frac{1}{2})^2 \right) r_{rn}^2
$$
\nand for $r \neq s$,
\n
$$
h_{rr} = \frac{1}{n} \sum_{i} \left(\frac{1}{2} \sum_{i < j} (1 - \frac{1}{2})^2 \right) r_{rn}^2
$$

Veena T. G. and P. Yageen Thomas
\n**Here**
$$
I
$$
 is the identity matrix of order $(n-c) \times (n-c)$ and $H = ||h_{rs}||$,
\n
$$
h_{rr} = \frac{1}{n} \sum_{i} \frac{1}{2i} S_{r, rn} + \frac{1}{n^2} \sum_{i < j} (\frac{1}{2i} - \frac{1}{2j})^2 \Gamma_{rn}^2
$$
\n**1** for $r \neq s$,
\n
$$
h_{rs} = \frac{1}{n(n-1)} \sum_{i \neq j} \frac{1}{2i} \sum_{j} S_{r, sn} + \frac{1}{n^2 (n-1)} \sum_{i < j} (\frac{1}{2i} - \frac{1}{2j})^2 \Gamma_{rn} \Gamma_{sn},
$$
\n**here** i and j vary from 1 to n and r and s are such that $c + 1 \leq r < s \leq n - c$.

88
 Solution

Where *I* is the identity matrix of order $(n-c) \times (n-c)$ and *H* = $||h_{rs}||$,
 $h_{rr} = \frac{1}{n} \sum_{i} \frac{1}{2i} S_{r, rn} + \frac{1}{n^2} \sum_{i \leq j} (\frac{1}{2i} - \frac{1}{2j})^2 \Gamma_{rn}^2$

and for $r \neq s$,
 $h_{rs} = \frac{1}{n(n-1)} \sum_{i \neq j} \frac{1}{2i$ Veena *T*. G. and *P*. Yageen Thomas

veena *T*. G. and *P*. Yageen Thomas
 $\int_{\pi}^{\pi} = \frac{1}{n} \sum_{i} \left(\frac{1}{2} S_{r, en} + \frac{1}{n^2} \sum_{i \leq j} (\frac{1}{2} a_i - \frac{1}{2} a_j)^2 \right) \cdot \int_{\pi}^{\pi}$

for $r \neq s$,
 $\int_{\pi}^{\pi} = \frac{1}{n(n-1)} \sum_{i \neq j} \frac$ *Veena T. (*

dentity matrix of order $(n-c) \times (n-c)$:
 $S_{r,r;n} + \frac{1}{n^2} \sum_{i < j} (\dagger_{2i} - \dagger_{2j})^2 \Gamma_{rn}^2$
 $\sum_{i \neq j} \dagger_{2i} \dagger_{2j} S_{r,s;n} + \frac{1}{n^2 (n-1)} \sum_{i < j} (\dagger_{2i} - \dagger_{2j})^2$

ary from 1 to *n* and *r* and *s* are such

8) *Veena T. G. and P. Yageen Tha*

is the identity matrix of order $(n-c) \times (n-c)$ and $H = ||h_{rs}||$,
 $\frac{1}{n} \sum_{i} \frac{1}{2s} S_{r, rn} + \frac{1}{n^2} \sum_{i < j} (\frac{1}{2i} - \frac{1}{2j})^2 \Gamma_{rn}^2$
 $\neq s$,
 $\frac{1}{n(n-1)} \sum_{i \neq j} \frac{1}{2s} \int_{2s}^{1} S_{r, sn} + \$ *Veena T. G. and P. Yageen Thomas*
 *n*tity matrix of order $(n-c) \times (n-c)$ and $H = ||h_{rs}||$,
 $\frac{1}{n^2 + \frac{1}{n^2} \sum_{i \leq j} (\tau_{2i} - \tau_{2j})^2 \tau_{rsn}^2}$
 $\tau_{2i} \tau_{2j} S_{r,sn} + \frac{1}{n^2 (n-1) \sum_{i \leq j} (\tau_{2i} - \tau_{2j})^2 \tau_{rsn} \tau_{sn},$
 y fr Veena T. G. and P. Yageen Thomas

I is the identity matrix of order $(n-c) \times (n-c)$ and $H = ||h_{rs}||$,
 $= \frac{1}{n} \sum_{i} \frac{1}{i} \sum_{i}^{2i} S_{r, rn} + \frac{1}{n^2} \sum_{i \leq j} (\frac{1}{2i} - \frac{1}{2j})^2 \Gamma_{rn^2}^2$
 $= \frac{1}{n(n-1)} \sum_{i \neq j} \frac{1}{i} \sum_{i} S_{r, xn$ Veena T. G. and P. Yageen Thomas

the identity matrix of order $(n-c) \times (n-c)$ and $H = ||h_n||$.
 $\int_{-1}^{1} \frac{1}{2s} S_{r, cm} + \frac{1}{n^2} \sum_{i \le j} (\uparrow_{2i} - \uparrow_{2j})^2 \Gamma_{rn}^2$
 $\int_{-1}^{1} \sum_{i \ne j} [\uparrow_{2i} S_{r, \text{c.m}} + \frac{1}{n^2 (n-1)} \sum_{i \le j} (\uparrow_{2$ S8

Weena *T*. *G.* and *P.* Yageen Thomas

where *I* is the identity matrix of order $(n-c) \times (n-c)$ and $H = ||h_{ij}||$,
 $h_{rr} = \frac{1}{n} \sum_{i} \sum_{i} \sum_{i} (\sum_{i} (-1)^{i} \sum_{i} (1^{i} - 1^{i})^{2} \sum_{i} (1^{i} - 1^{i})^{2} \sum_{i} (1^{i} - 1^{i})^{2} \sum_{i} (1^{i}$ the BLUE of Hence we may obtain two linear unbiased estimators of ... by minimizing the variance in a restricted sense as done in Chacko and Thomas (2008). **Theorem 2.1** Let *R* be a column vector of scalars of order n and R^r <sub>*F*(*n* π) **n** $R^r = \frac{1}{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} (x_i - x_{i})^2 r_{ra}^2$

and for $r \neq s$,
 $h_n = \frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{i=1}^{n} (x_i - x_{i})^2 r_{ra}^2$ </sub> State of V and P . Yageen Thomas

where I is the identity matrix of order $(n-c) \times (n-c)$ and $H = ||h_{\alpha}||$,
 $h_{\alpha} = \frac{1}{n} \sum_{i} \frac{1}{i} \frac{2}{i} S_{r,\alpha n} + \frac{1}{n^2} \sum_{i \in J} (\frac{1}{2i} - \frac{1}{2j})^2 r_{\alpha n}^2$

and for $r \neq s$,
 $h_{\alpha} = \$ $\left(-\frac{1}{2}\right) \sum_{i \neq j} \sum_{i} \sum_{j} S_{r,s;n} + \frac{1}{n^2 (n-1)} \sum_{i < j} (\sum_{i} (-\sum_{j} j)^2 \Gamma_{rn} \Gamma_{sn},$
 j vary from 1 to *n* and *r* and *s* are such that $c + 1$

and (8) do not provide a general Gauss-Markov set up

.... Hence we may (a) $\frac{1}{i+j}$ $\frac{1}{i+j}$ $\frac{1}{i+j}$ $\frac{n^2(n-1)\frac{1}{i

(b) $i = 1, 2, 3, \ldots, n^2$ of $n \neq 0$ and r and s are such to $\ln d$ (8) do not provide a general Gauss-Mark $f(x)$. Hence we may obtain two linear$ matrix of order $(n-c) \times (n-c)$
 $\frac{1}{n^2} \sum_{i \le j} (\frac{1}{2i} - \frac{1}{2j})^2 r_{rn}^2$
 $\frac{1}{2i} \frac{1}{2j} S_{r,s;n} + \frac{1}{n^2 (n-1)} \sum_{i \le j} (\frac{1}{2i} - \frac{1}{2j})^2$

y from 1 to *n* and *r* and *s* are sum do not provide a general Gauss-Nence we *n*²(*n*-1) $\frac{1}{i \neq j}$
j vary from 1 to *n* and *r* and *s*
*n*²(*n*-1) $\frac{1}{i \leq j}$
*n*²(*n*-1) $\frac{1}{i \leq j}$
*n*²(*n*-1) $\frac{1}{i \leq j}$
*n*²(*n*) and *s*
n is a metric is and $f(x)$
n of $Y_{[c+1:n]}, Y_{[c$ re *I* is the identity matrix of order $(n-c) \times (n-c)$ and $H = ||h_{n}||$,
 $i_{n} = \frac{1}{n} \sum_{i} \int_{1}^{2} \sum_{2j \leq r, n} \frac{1}{n} \sum_{i \leq j} (f_{2i} - f_{2j})^2 r_{n}^2$

for $r \neq s$,
 $i_{n} = \frac{1}{n(n-1)} \sum_{i \neq j} \int_{2i}^{1} \sum_{2j} (s_{r, kn} + \frac{1}{n^2 (n-1)} \$ *Veena T. G. and P. Yageen Thomas*

matrix of order $(n-c) \times (n-c)$ and $H = ||h_{rs}||$,
 $\frac{1}{n^2} \sum_{i \in J} (\dot{t}_{2i} - \dot{t}_{2j})^2 r_{rn}^2$
 $\int_{2j} S_{r,sn} + \frac{1}{n^2 (n-1)} \sum_{i \in J} (\dot{t}_{2i} - \dot{t}_{2j})^2 r_{rn} r_{sn}$,

mm 1 to *n* and *r* and *s* Veena T. G. and P. Yageen Thomas

s the identity matrix of order $(n-c) \times (n-c)$ and $H = ||h_n||$,
 $\sum_{i=1}^{\infty} \frac{1}{2} S_{r,m} + \frac{1}{n^2} \sum_{i \in J} (1 + 1 + 2)^2 r_{rn}^2$
 s ,
 $\sum_{j=1}^{\infty} \frac{1}{2} \int_{2}^{1} \frac{1}{2} \int_{2}^{2} S_{r,m} + \frac{1}{n^2 (n-1$

Theorem 2.1 Let R be a column vector of scalars of order n and $R'Y_{[n,c]}^*$ be a

$$
Var\left(R'Y_{[n,c]}^*\right) = (1 - ...^2) \frac{1}{n} \sum_{i=1}^n \frac{1}{2i} R'R + ...^2 R'HR
$$
\n(9)

Then an estimator \hat{u}_1 obtained by minimizing $R'R$ involved in (9) subject to the obtained by minimizing *R'R* involved in (9) subject to the
involved by minimizing *R'RR* involved in (9) subject to the
involved by minimizing *R'RR* involved in (9) subject to the
involved by minimizing *R'RR* involved $h_{rr} = \frac{1}{n} \sum_{i} \frac{1}{i} \sum_{i} S_{r, rn} + \frac{1}{n^2} \sum_{i < j} (\frac{1}{2i} - \frac{1}{2i})^2 f$
and for $r \neq s$,
and for $r \neq s$,
 $h_{rs} = \frac{1}{n(n-1)} \sum_{i \neq j} \frac{1}{2i} \sum_{j} S_{r, sn} + \frac{1}{n^2(n-1)}$
where *i* and *j* vary from 1 to *n* and *r* and
Clea ${}^{t}Y_{[n,c]}^{*}$ is unbiased for \dots is given by $\widehat{...}_1 = \frac{S'}{S'S} Y_{[n,c]}^{*}$ and an d estimators of ... by

Chacko and Thomas

ir n and $R'Y_{[n,c]}^*$ be a

in by

(9)

d in (9) subject to the
 $Y_1 = \frac{S'}{S'}Y_{[n,c]}^*$ and an

in (9) subject to the
 $\frac{H^{-1}}{S}Y_{[n,c]}^*$ *n*, \cdot
+1≤ *r* < *s* ≤ *n* − *c*.
up so as to derive
timators of ... by
acko and Thomas
and $R'Y_{[n,c]}^*$ be a
y
y
(9)
(9)
(9)
subject to the
 $\frac{S'}{S}Y_{[n,c]}^*$ and an
9) subject to the
 $\frac{S'}{S}Y_{[n,c]}^*$. estimator \hat{u}_2 obtained by minimizing *R'HR* involved in (9) subject to the $\int \sum_{i=1}^{\infty} \int_{2i}^{1} z_i \, \frac{1}{2i} \, S_{r,gen} + \frac{1}{n^2 (n-1)} \sum_{i \leq j} (1 \, z_i - 1 \, z_j)^2 \, \Gamma_{r,n} \Gamma_{sn},$

vary from 1 to *n* and *r* and *s* are such that $c + 1 \leq r < s \leq n - c$.

(8) do not provide a general Gauss-Markov set up so $h_{rs} = \frac{1}{n(n-1)} \sum_{i \neq j} \frac{1}{1} \sum_{2i} \frac{1}{5} \sum_{r,s;n} + \frac{1}{n^2(n-1)}$
where *i* and *j* vary from 1 to *n* and *r i*
Clearly (7) and (8) do not provide a gene
the BLUE of Hence we may obtain t
minimizing the variance $Y_{[n,c]}^*$ is unbiased for ... is given by $\widehat{N}_{i,j} = \frac{S'H^{-1}}{(r-1)} Y_{[n,c]}^*$. of order n and $R'Y_{[n,c]}$ be a

ce given by

(9)

involved in (9) subject to the

n by $\widehat{H}_{-1} = \frac{S'}{S'} Y_{[n,c]}^*$ and an

olved in (9) subject to the
 $\widehat{H}_{2} = \frac{S'H^{-1}}{S'H^{-1}S} Y_{[n,c]}^*$. $H^{-1}S$ $^{[n,c]}$ $\widehat{...}_{2} = \frac{S'H^{-1}}{1.5 \cdot 1.5 \cdot 1} Y_{[n,c]}^{*}.$ *i* $r_{r,n}r_{s,n}$,

that $c+1 \le r < s \le n-c$.

(sover the solution of and the sased estimators of and the same of the same of the same of the all iven by

only and the same of the -1 and -1 and -1 and -1 and -1 $\widehat{C}_2 = \frac{S'H^{-1}}{S'H^{-1}S}Y_{[n,c]}^*.$ Var $(R'Y_{[n,c]}^*) = (1 - ...^2) \frac{1}{n} \sum_{i=1}^n \frac{1}{2i} R'R + ...^2 R'HR$

Then an estimator $\frac{1}{n}$ obtained by minimizing R'R involved in (9) so

condition that $R'Y_{[n,c]}^*$ is unbiased for ... is given by $\frac{1}{n} = \frac{S'}{S'S'}$

estimat (7) and (8) do not provide a general Gauss-Markov set up so as

UE of Hence we may obtain two linear unbiased estimators

zing the variance in a restricted sense as done in Chacko and
 m 2.1 Let R be a column vecto bela Ualus-Malkov set up so as

two linear unbiased estimator

d sense as done in Chacko and

or of scalars of order n and R'I
 $\frac{1}{1}$ with variance given by
 $+\frac{2}{1}$ with variance given by
 $+\frac{2}{1}$ with variance g and *j* vary from 1 to *n* and *r* and *s* are such that $c+1 \le r < s \le n-c$.

(7) and (8) do not provide a general Gauss-Markov set up so as to derive
 IE of Hence we may obtain two linear unbiased estimators of ... by of provide a general Gauss-Markov set up so as to derive
we may obtain two linear unbiased estimators of ... by
 i in a restricted sense as done in Chacko and Thomas

a column vector of scalars of order n and $R'Y_{[n,c]}^{$ and *j* vary from 1 to *n* and *r* and *s* are such that $c + 1 \le r < s \le n - c$.

7) and (8) do not provide a general Gauss-Markov set up so as to derive

E of Hence we may obtain two linear unbiased estimators of ... by
 that $R'Y_{[n,c]}$ is unbiased for ... is given by $\frac{1}{\log 2} = \frac{1}{S \cdot S} Y_{[n,c]}$ and
 $\frac{1}{\log 2}$ obtained by minimizing $R'HR$ involved in (9) subject to

that $R'Y_{[n,c]}^*$ is unbiased for ... is given by $\frac{1}{\log 2} = \frac{S'H^{$ **n 2.1** Let *R* be a column vector of scalars of order n and $R'Y_{[n,c]}^*$ be a

notion of $Y_{[c+1a]}^*$, $Y_{[c+2a]}^*$, $Y_{[n-ca]}^*$ with variance given by
 $(R'Y_{[n,c]}^*) = (1 - \dots^2) \frac{1}{n} \sum_{i=1}^{n} \frac{2}{3} R' R + \dots^2 R' H R$ (9)

esti mn vector of scalars of order n and

..., $Y_{[n-cn]}$ with variance given by
 $\sum t_{2i}^2 R'R + ...^2 R'HR$

by minimizing $R'R$ involved in (9)

iased for ... is given by $\frac{S}{m_1} = \frac{S'}{S'S}$

nimizing $R'HR$ involved in (9)

ad for be a column vector of scalars of order n and $RY'_{\{u,c\}}$ be a
 $n^2 Y_{\{u,c\}} \cdots Y_{\{u-cn\}}$ with variance given by
 $\therefore \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1} \frac{2}{2i} R' R + \dots^2 R' H R$ (9)

bbtained by minimizing R'R involved in (9) subject to Ing the variance in a restricted sense as done in Chacko and Thomas
 2.1 Let *R* be a column vector of scalars of order n and $R'Y_{[n,c]}^*$ be a

lection of $Y_{[c+i:n]}, Y_{[c+2:n]}, ..., Y_{[n-c:n]}$ with variance given by
 $RY_{[n,c]}^*$ = nn vector of scalars of order n and $R'Y_{[n,c]}^*$ be a

..., $Y_{[n,-cn]}$ with variance given by
 $\pm \frac{2}{3}R'R + ...^2R'HR$ (9)

by minimizing $R'R$ involved in (9) subject to the

seed for ... is given by $\frac{2}{n_1} = \frac{S'}{S}Y_{[n,c]}$ for ... is given by $m_1 = \frac{1}{S^2} Y_{[n,c]}$ and an
 $\lim_{s \to c} R' H R$ involved in (9) subject to the
 $\lim_{s \to c} \frac{1}{S^2} R'' R^{2s} = \frac{1}{S^2 H^{-1} S} Y_{[n,c]}^*$.
 $\lim_{s \to c} \frac{1}{S^2} S^{2s} = \frac{1}{S^2 H^{-1} S}$ (10) 2.1 Let R be a column vector of scalars of order n and $R'Y_{\text{[n,c]}}^*$ be a

cition of $Y_{\{\text{[n,c]}}}, Y_{\{\text{[n,c]}}}, \dots, Y_{\{\text{[n-c]}}\}$ with variance given by
 $R'Y_{\text{[n,c]}}^*$ = $(1 - \frac{3}{n})\frac{1}{n^2} \sum_{i=1}^{n} \frac{1}{2i}RR + \frac{3}{n^$ $Var(RY_{[n,c]}^{K}) = (1 - ...^{2}) \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} \lambda^{2} R^{2} + ...^{2} R^{2} H R$ (9)

Then an estimator $\frac{1}{n_{c1}}$ obtained by minimizing *R'R* involved in (9) subject to the

condition that $R'Y_{[n,c]}^{K}$ is unbiased for ... is given

$$
Var(\widehat{\ldots}_1) = (1 - \ldots^2) \frac{1}{n} \sum_{i=1}^n \frac{1}{2i} \frac{1}{S^2} + \ldots^2 \frac{S^2}{(S^2)^2}
$$
(10)

and

$$
Var(\hat{...}_2) = (1 - ...^2) \frac{1}{n} \sum_{i=1}^n \frac{1}{2i} \frac{1}{(S'H^{-1}S)^2} + ...^2 \frac{1}{S'H^{-1}S}
$$
(11)

Proof

Using (7), we have

$$
E(R'Y_{[n,c]}^*) = R'S...
$$

Hence, $R'Y_{n,c}^*$ will be an unbiased estimator for \ldots if

Application of concomitants of order statistics ……. estimation 89

$$
R'S = 1.
$$
 (12)

To minimize $R'R$ subject to the condition that $R'Y_{[n,c]}^*$ is unbiased for ..., we

$$
E_1 = R'R - 2 \, \frac{1}{1} (R'S - 1), \tag{13}
$$

Application of concomitants of order statistics estimation
 $R'S = 1$.

To minimize $R'R$ subject to the condition that $R'Y_{[n,c]}^*$ is unbiased for ...,

have to minimize
 $\mathbb{E}_1 = R'R - 2\}_1 (R'S - 1)$,

Where $\}_1$ is Application of concomitants of order statistics estimation
 $R' = 1$. (12)

To minimize $R'R$ subject to the condition that $R'Y_{[n,c]}^*$ is unbiased for ..., we

have to minimize
 $\mathbb{E}_1 = R'R - 2\mathbb{1}_1(R'S - 1)$, (13)
 Where $\}$ ₁ is the Lagrangian multiplier. Differentiating (13) with respect to Application of concomitants of order statistics estimation
 R' R' $S = 1$.
 Comminize
 R' R' lication of concomitants of order statistics estim
 $R'S = 1$.

minimize $R'R$ subject to the condition that $R'Y_{\lfloor n}^*$

e to minimize
 $E_1 = R'R - 2\}_1 (R'S - 1)$,

ere $\Big|_1$ is the Lagrangian multiplier. Different
 m of concomitants of order statistics estimational
 $= 1$.
 $\text{size } R'R \text{ subject to the condition that } R'Y^*_{[n,c]}$
 minimize
 $R'R - 2\}_1 (R'S - 1),$
 $\frac{1}{1}$ is the Lagrangian multiplier. Differentiat
 $\text{using to zero, we get } 2R - 2\}_1 S = 0.$
 S .

That is,

Substituting the value of R in (12), we get

$$
\bigg\}^{\,1} = \frac{1}{\mathsf{S}^{\,\prime}\mathsf{S}}
$$

Therefore,

$$
R = \frac{S}{S'S}
$$

ion of concomitants of order statistics *estima*
 $= 1$.

mize *R'R* subject to the condition that $R'Y_{[n,c]}^*$

minimize
 $R'R - 2Y_1(R'S - 1)$,
 Y_1 is the Lagrangian multiplier. Differential

quating to zero, we Thus the required unbiased estimator \hat{u}_1 of \hat{u}_2 is given by $\hat{u}_1 = \frac{S'}{S'S} Y_{[n,c]}^*$. $\hat{Y}_1 = \frac{S'}{S'S} Y_{[n,c]}^*$. (12)

..., we

(13)

respect to
 $\frac{S'}{S} Y_{[n,c]}^*$
 $\frac{S'}{S} Y_{[n,c]}^*$ Then by using (8), the variance of \hat{u}_1 is given by $\frac{1}{s}$
 $\frac{s}{s}$

required unbiased estimator $\frac{1}{s}$ of \ldots is given by $\frac{1}{s}$

ising (8), the variance of $\frac{1}{s}$ is given by
 $\frac{1}{s}$) = (1 – ...²) $\frac{1}{n} \sum_{i=1}^{n} \frac{1}{s} \cdot \frac{1}{s} + \ldots^2 \frac{s'HS}{(s's)^2}$
 1 1 1 () (1) er. Differentiating (13) with
 ${}_{1}S = 0$.

get

get
 $\widehat{...}_{1}$ of $...$ is given by $\widehat{...}_{1} = \frac{1}{2}$

given by
 $S'HS$
 $(S'S)^{2}$

to the condition that $R'Y_{[n,c]}^{*}$ is minimize
 $R'R - 2\frac{1}{2}(R'S - 1)$, (13)
 $\}$, is the Lagrangian multiplier. Differentiating (13) with respect to

quating to zero, we get $2R - 2\frac{1}{2}S = 0$.
 $\}$, S.

ting the value of R in (12), we get
 $\frac{1}{S'S}$
 $\frac{1$ 1),

(13)

ingian multiplier. Differentiating (13) with respect to

we get $2R-2$ ₁, s = 0.
 i R in (12), we get
 i R in (12), we get

assed estimator \hat{u}_1 of \hat{u}_2 is given by $\hat{u}_1 = \frac{S'}{S'S'} Y_{[n,c]}^*$.

ari minimize
 $R'R = 2\frac{1}{2}(R'S - 1)$, (13)
 $\frac{1}{2}$, is the Lagrangian multiplier. Differentiating (13) with respect to
 $\frac{1}{2}$, is the Lagrangian multiplier. Differentiating (13) with respect to
 $\frac{1}{2\sqrt{5}}$
 $\frac{5}{5}$
 R and equating to zero, we get $2R - 2$, ≤ 9 .

That is,
 $R = \frac{1}{5}$.

Substituting the value of R in (12), we get
 $\int_1 = \frac{1}{55}$

Therefore,
 $R = \frac{5}{55}$

Thus the required unbiased estimator $\frac{5}{10}$ of \ldots is That is,
 $R = \frac{1}{2}$, S.

Substituting the value of R in (12), we get
 $\frac{1}{2} = \frac{1}{5}$

Therefore,
 $R = \frac{S}{S}$

Thus the required unbiased estimator $\frac{1}{m_1}$ of \ldots is given by $\frac{S}{m_1} = \frac{S'}{S}$
 $V_{\text{p},e,1}^$ $J_1 = \frac{1}{s \text{ s}}$
 $R = \frac{s}{s \text{ s}}$
 $R = \frac{s}{s \text{ s}}$

the required unbiased estimator $\frac{1}{n_1}$ of \ldots is given by $\frac{1}{n_1} = \frac{s'}{s} Y_{\text{in},d}^*$
 $Var(\frac{1}{n_1}) = (1 - \ldots^2) \frac{1}{n} \sum_{i=1}^n \frac{1}{s_i} \frac{1}{s_i} + \ldots \frac{s'}{(s \text{ s})^2}$
 refore,
 $R = \frac{S}{S'S}$

as the required unbiased estimator \hat{m}_1 of \hat{m} is given by \hat{m}_1

in by using (8), the variance of \hat{m}_1 is given by
 $Var(\hat{m}_1) = (1 - \hat{m}^2) \frac{1}{n} \sum_{i=1}^{n} \frac{1}{i} \frac{1}{i} \frac{1}{i} \frac{1}{i}$ the required unbiased estimator \hat{m}_1 of \hat{m}_2
by using (8), the variance of \hat{m}_1 is given by
 $r(\hat{m}_1) = (1 - \hat{m}^2) \frac{1}{n} \sum_{i=1}^{n} \hat{m}^2 \frac{1}{i} \frac{1}{s} + \hat{m}^2 \frac{S'HS}{(S^2)^2}$
rly, to minimize *R'HR* subject to

$$
Var(\widehat{...}_{1}) = (1 - ...^{2}) \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2^{i}} \frac{1}{S^{2}} + ...^{2} \frac{S^{'}HS}{(S^{'}S)^{2}}
$$

Similarly, to minimize R'HR subject to the condition that $R'Y_{[n,c]}^*$ is unbiased

$$
\mathbb{E}_2 = R' H R - 2 \frac{1}{2} (R' S - 1),\tag{14}
$$

where $\}$ ₂ is the Lagrangian multiplier. Differerentiating (14) with respect to *R* and equating to zero, we get

That is,

$$
R=\frac{1}{2},H^{-1}\mathsf{S}\,.
$$

Substituting the value of R in (12), we get

$$
\big\}_2 = \frac{1}{\mathsf{S}'H^{-1}\mathsf{S}}.
$$

Therefore,

$$
R=\frac{H^{-1}\mathsf{S}}{\mathsf{S}'H^{-1}\mathsf{S}}.
$$

Veena T. G.
 $\frac{H^{-1}S}{S'H^{-1}S}$.
required unbiased estimator $\widehat{a_2}$ of \ldots is given by $\widehat{a_2}$. Thus the required unbiased estimator \hat{f}_{2} of \hat{f}_{2} is given by $\hat{f}_{2} = \frac{S'H^{-1}}{S'H^{-1}S}Y_{n}^{*}Y_{n}$. and P. Yageen Thomas
 $\sum_{i=2}^{\infty} \frac{1}{1 - s} Y_{[n,c]}^*$ $H^{-1}S$ $^{[n,c]}$ $\hat{w}_{2} = \frac{S'H^{-1}}{I(z-1)}Y_{[n,c]}^{*}.$ *P. Yageen Thomas*
 $\frac{S'H^{-1}}{S'H^{-1}S}Y_{[n,c]}^*$. -1 and -1 and -1 and -1 and -1 $\widehat{C}_2 = \frac{S'H^{-1}}{S'H^{-1}S}Y_{[n,c]}^*$. Then by using (8), the variance of \hat{w}_2 is given by Veena T. G. and P. You

mbiased estimator \hat{m}_2 of \hat{m} is given by $\hat{m}_2 = \frac{S'H}{S'H}$

the variance of \hat{m}_2 is given by
 $\hat{m}_2 = \frac{S'H}{S'H}$
 $\hat{m}_1 = \frac{S'H}{I} + \frac{1}{2I} \frac{S'H^{-2}S}{(S'H^{-1}S)^2} + \frac{1}{2I} \frac{S'H^{-1}S}{S'H^{-1}$ 90
 $\text{Mean } T. G. \text{ and } P. \text{ Yageen } T.$
 $R = \frac{H^{-1}S}{S'H^{-1}S}.$

Thus the required unbiased estimator $\frac{1}{2}$ of ... is given by $\frac{1}{2} = \frac{S'H^{-1}}{S'H^{-1}S}Y_{[n,c]}^{*}$

Then by using (8), the variance of $\frac{1}{2}$ is given by
 $Var(\frac{$ *Veena T. G. and P. Yageen Thomas*
 $\frac{H^{-1}S}{S'H^{-1}S}$.
 $\frac{1}{S'H^{-1}S}$.
 \therefore required unbiased estimator $\frac{1}{\cdots 2}$ of \cdots is given by $\frac{1}{\cdots 2} = \frac{S'H^{-1}}{S'H^{-1}S}Y_{[n,c]}^*$.
 \therefore using (8), the variance of $\frac{$ Veena T. G. and P. Yageen Thomas

or \hat{H} of \hat{H} is given by \hat{H} = $\frac{S'H^{-1}}{S'H^{-1}S}Y_{[n,c]}^*$.
 \hat{H} is given by
 \hat{H} is given by
 \hat{H} = $\frac{S'H^{-1}}{S'H^{-1}S}$
 H = \hat{H} = $\frac{S'H^{-1}}{S'H^{-1}S}Y_{[n,s]}^*$

$$
Var(\widehat{...}_{2}) = (1 - ...^{2}) \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2^{i}} \frac{1}{(s' H^{-1} s)^{2}} + ...^{2} \frac{1}{s' H^{-1} s}
$$

Veena T. G. and P. Yageen Thomas
 $=\frac{H^{-1}S}{S'H^{-1}S}$.

Le required unbiased estimator $\frac{1}{\cdot 2}$ of ... is given by $\frac{1}{\cdot 2} = \frac{S'H^{-1}}{S'H^{-1}S}Y_{[n,c]}^*$.
 $\left(\frac{1}{\cdot 2}\right) = (1 - \frac{1}{n})\frac{1}{n}\sum_{i=1}^{n} \frac{1}{2i} \frac{S'H^{-2}S}{(S'H$ Veena T. G. and P.

imator $\frac{1}{m_2}$ of ... is given by $\frac{1}{m_2} = \frac{S}{S'}$

e of $\frac{1}{m_2}$ is given by
 $\frac{S'H^{-2}S}{(S'H^{-1}S)^2} + \frac{1}{S'H^{-1}S}$
 $\frac{*}{[S'H^{-1}S]}$
 $\frac{1}{S'H^{-1}S}$
 $\frac{1}{S'H^{-1}S}Y^*_{[n,c]}$ are

es given by (10 *Veena T. G. and P. Yageen Thomas*

iased estimator $\frac{1}{n_2}$ of ... is given by $\frac{1}{n_2} = \frac{S'H^{-1}}{S'H^{-1}S}Y_{[n,c]}^*$.

variance of $\frac{1}{n_2}$ is given by
 $\frac{1}{n} \sum_{i=1}^n \frac{1}{2i} \frac{S'H^{-2}S}{(S'H^{-1}S)^2} + \frac{1}{n_2} \frac{1}{S'H$ *Veena T. G. and P. Yageen Thomas*

mator \hat{H}_{2} of \hat{H}_{2} is given by $\hat{H}_{2} = \frac{S'H^{-1}}{S'H^{-1}S}Y_{[n,c]}^{*}$

of \hat{H}_{2} is given by
 $\frac{S'H^{-2}S}{S'H^{-1}S} + \frac{1}{S'H^{-1}S}$
 $\frac{1}{S'H^{-1}S}[H^{-1}S]^{*}$ are two unbiased

s giv Veena T. G. and P. Yageen Thomas
 $\frac{H^{-1}S}{S'H^{-1}S}$.

required unbiased estimator $\frac{1}{m_2}$ of ... is given by $\frac{1}{m_2} = \frac{S'H^{-1}}{S'H^{-1}S}Y_{[n,n]}^*$.

using (8), the variance of $\frac{1}{m_2}$ is given by
 $\frac{1}{m_2} = (1 - \frac$ biased estimator \hat{H}_2 of \hat{H}_1 is given by $\hat{H}_2 = \frac{S'H^{-1}}{S'H^{-1}S}Y_1$

e variance of \hat{H}_2 is given by
 $\frac{1}{n} \sum_{i=1}^n \frac{1}{n} \sum_{i=1}^n \frac{1}{2i} \frac{1}{(S'H^{-1}S)^2} + \frac{1}{2i} \frac{1}{S'H^{-1}S}$
 $\hat{H}_1 = \frac{S'}{S'S}Y_{1n,c}^*$ $\hat{m}_1 = \frac{S'}{S'S} Y_{[n,c]}^*$ *and* $\hat{m}_2 = \frac{S'H^{-1}}{S'H^{-1}S} Y_{[n,c]}^*$ are two unbiased *Veena T. G. and P. Yage*

ed estimator $\frac{1}{n_2}$ of ... is given by $\frac{1}{n_2} = \frac{S'H^{-1}}{S'H^{-1}}S$

ariance of $\frac{1}{n_2}$ is given by
 $\frac{n}{\sum_{i=1}^{n_2}} + \frac{1}{2i} \frac{S'H^{-2}S}{(S'H^{-1}S)^2} + \dots^2 \frac{1}{S'H^{-1}S}$
 $\frac{S'}{S'S'} Y_{[n,c]}^*$ of ... is given by $\hat{H}_{2} = \frac{S'H^{-1}}{S'H^{-1}S}Y_{[n,c]}^{*}$.

iven by
 $H = \frac{2}{\pi} \frac{1}{S'H^{-1}S}$
 $H = \frac{2}{\pi} \frac{S'H^{-1}}{S'H^{-1}S}Y_{[n,c]}^{*}$ are two unbiased

(10) and (11) respectively, then \hat{H}_{1} is
 $H = \frac{1}{\pi} \frac{S'H^{-1}S}{S+1}$ H^{-1} S $[0, c]$ $\hat{m}_2 = \frac{S'H^{-1}}{I(z)}Y_{[n,c]}^*$ are two unbiased *Veena T. G. and P. Yageen Thomas*

is given by $\hat{H}_{2} = \frac{S'H^{-1}}{S'H^{-1}S}Y_{[n,c]}^{*}$,

by
 $\frac{1}{S'H^{-1}S}$
 $\frac{S'H^{-1}}{S'H^{-1}S}Y_{[n,c]}^{*}$ are two unbiased

and (11) respectively, then $\hat{H}_{n,c}$ is

where -1 $\widehat{C}_2 = \frac{S'H^{-1}}{S'H^{-1}S}Y_{[n,c]}^*$ are two unbiased estimators of \ldots with variances given by (10) and (11) respectively, then \ldots is more efficient than \widehat{u}_2 if $||...|| \leq \sqrt{\frac{K_2}{K_1 + K_2}}$ where 1 2 Veena T. G. and P. Yageen Thomas

estimator $\frac{1}{m_2}$ of ... is given by $\frac{1}{m_2} = \frac{S'H^{-1}}{S'H^{-1}S}Y_{[n,e]}^*$.

ance of $\frac{m_2}{m_2}$ is given by
 $\int_{-2i}^{2} \frac{S'H^{-2}S}{(S'H^{-1}S)^2} + \frac{1}{m^2} \frac{1}{S'H^{-1}S}$
 $\int_{-2i}^{i} \frac{1}{$ *Veena T. G. and P. Yageen Thomas*
 Kor $\frac{1}{m_2}$ of ... is given by $\frac{1}{m_2} = \frac{S'H^{-1}}{S'H^{-1}S}Y_{[n,c]}^*$.
 $\frac{1}{m_2}$ is given by
 $\frac{H^{-2}S}{S'H^{-1}S} + \frac{1}{S'H^{-1}S}Y_{[n,c]}^*$ are two unbiased
 Koren by (10) and (11) r $+ K_2$ where **with** $ar(\hat{x}_2) = (1 - \hat{x}^2) \frac{1}{n} \sum_{i=1}^n \frac{1}{2i} \frac{1}{(S'H^{-1}S)^2} + \dots^2 \frac{1}{S'H^{-1}S}$
 rem 2.2 If $\hat{x}_1 = \frac{S'}{S'S} Y_{[n,c]}^*$ and $\hat{x}_2 = \frac{S'H^{-1}}{S'H^{-1}S} Y_{[n,c]}^*$

ators of \hat{x}_1 with variances given by (10) and (11) respectivel $\frac{H^{-1}S}{S'H^{-1}S}$.

required unbiased estimator $\frac{1}{m^2}$

using (8), the variance of $\frac{1}{m^2}$ is
 $\frac{1}{m^2}$ = $(1-\dots^2)\frac{1}{n}\sum_{i=1}^n + \frac{1}{2i}\frac{S'H^{-2}S}{(S'H^{-1}S)}$

n 2.2 If $\frac{1}{m} = \frac{S'}{S'S}Y_{[n,c]}^*$ and

rs of ... *H*⁻¹S
 s'H⁻¹S

required unbiased estimator $\frac{1}{m_2}$ of \ldots is given by

using (8), the variance of $\frac{1}{m_2}$ is given by
 \sum_2) = $(1-\ldots^2)\frac{1}{n}\sum_{i=1}^n 1\frac{1}{2i} \frac{S'H^{-2}S}{(S'H^{-1}S)^2} + \ldots^2 \frac{1}{S'H^{-1}S}$
 H⁻¹S
 s⁻¹*S*
 s (*8*), the variance of $\frac{1}{n^2}$ is given b
 $\frac{1}{n^2}$
 $\left(1 - \frac{1}{n^2}\right) \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2i} \frac{1}{(s'H^{-1}s)^2} + \frac{1}{n^2} \frac{1}{s^2}$
 2.2 *If* $\frac{1}{n^2} = \frac{s'}{s's} Y_{[n,c]}^*$ *and* $\frac{1}{n^2} =$ Veena T. G. and P. Yageen Thomas
 $= \frac{H^{-1}S}{S'H^{-1}S}$.

the required unbiased estimator $\frac{5}{12}$ of ... is given by $\frac{5}{12} = \frac{S'H^{-1}}{S'H^{-1}S}Y_{[n,c]}^{*}$.

y using (8), the variance of $\frac{5}{12}$ is given by
 $(\frac{5}{12}) = ($ Veena T. G. and P. Yageen Thomas
 $V = \frac{1}{15}$

quired unbiased estimator $\frac{1}{\alpha_2}$ of ... is given by $\frac{1}{\alpha_2} = \frac{S'H^{-1}}{S'H^{-1}S}Y_{(n,c)}^*$
 $V_{(n,c)}^*$
 $V_{(n,c)}^*$ is given by
 $V_{(n,c)}^* = (1 - \frac{1}{n})\frac{1}{n} \sum_{i=1}^{n} \frac{$ rem 2.2 If $\pi_1 = \frac{1}{S^2} Y_{[n,c]}$ and $\pi_2 = \frac{1}{S^2 H^{-1} S} Y_{[n,c]}$
ators of π_2 with variances given by (10) and (11) re
efficient than π_2 if $|\pi_1| \le \sqrt{\frac{K_2}{K_1 + K_2}}$ where
 $\pi_1 = \frac{S^2 H S}{(S^2 S)^2} - \frac{1}{S^2 H^{-1} S}$
 ed estimator $\frac{1}{m_2}$ of ... is given by $\frac{1}{m_2} = \frac{S'H^{-1}}{S'H^{-1}}$

riance of $\frac{1}{m_2}$ is given by
 $\frac{n}{s} + \frac{1}{2i} \frac{S'H^{-2}S}{(S'H^{-1}S)^2} + \frac{1}{s'H^{-1}S}$
 $\frac{S'}{S'S'} Y_{[n,c]}^*$ and $\frac{m_2}{m_2} = \frac{S'H^{-1}}{S'H^{-1}S} Y_{[n,c]}^*$ equired unbiased estimator \hat{u}_2 of ...

sing (8), the variance of \hat{u}_2 is given
 $y_1 = (1 - \hat{u}^2) \frac{1}{n} \sum_{i=1}^n \frac{1}{2i} \frac{s'H^{-2}s}{(s'H^{-1}s)^2} + \dots$

2.2 If $\hat{u}_1 = \frac{s'}{s's} Y_{[n,e]}^*$ and $\hat{u}_2 =$

of ... with variances fired unbiased estimator $\frac{1}{m_2}$ of ... is given by $\frac{1}{m_2} = \frac{S'H'}{S'H'}$

(8), the variance of $\frac{1}{m_2}$ is given by
 $(1-\frac{1}{m^2})\frac{1}{n}\sum_{i=1}^{n}1\frac{1}{2i}\frac{S'H'^2S}{(S'H'^2S)^2} + \frac{1}{m^2}\frac{1}{S'H'^2S}$

2 If $\frac{1}{m_1} = \frac$ ¹¹S.
 H⁻¹S.
 *A*_{*I*} (8), the variance of $\frac{1}{n^2}$ is given by $\frac{1}{n^2} = \frac{S'H^{-1}}{S'H^{-1}}Y_{[n,c]}^*$,
 mg (8), the variance of $\frac{1}{n^2}$ is given by
 $= (1 - \frac{1}{n^2})\frac{1}{n}\sum_{i=1}^n \frac{1}{i^2} \frac{S'H^{-2}S}{(S'H^{-1}S)^2} + \$ *H* ¹S

quired unbiased estimator $\frac{1}{m_2}$ of ... is given by $\frac{1}{m_2} = \frac{S'H^{-1}}{S'H^{-1}}$

ing (8), the variance of $\frac{m_2}{m_2}$ is given by
 $\vec{B} = (1 - \frac{m^2}{m_2}) \frac{1}{n_2} \frac{m_1}{m_2} + \frac{2}{n_2} \frac{S'H^{-2}S}{(S'H^{-1}S)^2} + \frac$ *R* = $\frac{H \cdot S}{S'H^{-1}S}$.

Thus the required unbiased estimator $\frac{2}{12}$ of ... is given by $\frac{2}{12} = \frac{S'H^{-1}}{S'H^{-1}S}Y_{[0,2]}^+$.

Then by using (8), the variance of $\frac{2}{12}$ is given by
 $Var(\frac{2}{12}) = (1 - \frac{2}{12})\frac{1}{12}$ y using (8), the variance of $\frac{1}{n^2}$ is given by
 $(\frac{1}{n^2}) = (1 - \frac{1}{n^2}) \frac{1}{n^2} \int_{1}^{n^2} \frac{1}{12i} \frac{1}{(5'H^{-1}S)^2} + \frac{1}{n^2} \frac{1}{5'H^{-1}S}$
 $\frac{1}{5TH^{-1}S}$
 $\frac{1}{12}$
 $\frac{1}{12}$
 $\frac{1}{12}$
 $\frac{1}{12}$
 $\frac{1}{12}$
 Var($\frac{1}{\alpha_2}$) = (1 - ...²) $\frac{1}{n} \sum_{i=1}^{\infty} \frac{1}{i} \frac{s^2 H^{-2} s}{(s^2 H^{-1} s)^2} + ...^2 \frac{1}{s^2 H^{-1} s}$
 i corem 2.2 *If* $\frac{1}{\alpha_1} = \frac{s^2}{s^2} Y_{(s,c)}^*$ *and* $\frac{1}{\alpha_2} = \frac{s^2 H^{-1}}{s^2 H^{-1} s} Y_{(s,c)}^*$ are two unbiase $\frac{1}{n}\sum_{i=1}^{n} \frac{1}{2i} \frac{1}{(s'H^{-1}s)^2} + \frac{1}{s'H^{-1}s}$
 $= \frac{s'}{s's} Y_{[n,c]}^* \text{ and } \frac{1}{n^2 s} = \frac{s'H^{-1}}{s'H^{-1}s} Y_{[n,c]}^* \text{ are two unbiased
variances given by (10) and (11) respectively, then $\frac{1}{n_1}$ is
at $2 \text{ if } |m| \le \sqrt{\frac{K_2}{K_1 + K_2}}$ where

$$
\frac{1}{s's} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{
$$$ using (8), the variance of $\frac{2}{n_2}$ is given by
 $\frac{2}{n_2}$ = $(1-\frac{2}{n_2})\frac{1}{n_2}\frac{n_2}{n_3} + \frac{3}{2n_3}\frac{5'H^{-3}S}{(S'H^{-1}S)^2} + \frac{3}{2} \frac{1}{S'H^{-1}S}$
 n 2.2 If $\frac{n_1}{n_1} = \frac{5'}{8} Y_{[n,c]}^s$ and $\frac{n_2}{n_2} = \frac{5'H^{-1}}{8'H^{-1}S$ e of $\frac{S'H^{-2}S}{(S'H^{-1}S)^2} + \dots^2 \frac{1}{S'H^{-1}S}$
 $\frac{s'H^{-2}S}{(S'H^{-1}S)^2} + \dots^2 \frac{1}{S'H^{-1}S}Y_{[n,c]}^*$ are two

es given by (10) and (11) respectively,
 $K\sqrt{\frac{K_2}{K_1+K_2}}$ where
 $\frac{1}{S'S} + \dots^2 \frac{1}{S'H^{-1}S} + K_1 \dots^2$,
 $\frac{1}{S'S} + \dots$ using (8), the variance of $\frac{5}{a_2}$ is given by
 $\binom{5}{a_2} = (1 - \frac{3}{a_1}) \frac{1}{n} \sum_{i=1}^{n} \frac{1}{t_i^2} \frac{1}{(s'H^{-1}s)^2} + \frac{1}{s'(H^{-1}s)}$
 n 2.2 If $\frac{5}{a_1} = \frac{s'}{s} Y_{\lfloor n, s \rfloor}$ and $\frac{5}{a_2} = \frac{s'H^{-1}}{s'(H^{-1}s)} Y_{\lfloor n, s \rfloor}$ a (angle in the space of $\frac{1}{n} \sum_{i=1}^{n} Y_i^*$ (s' $H^{-1}S$)² if S' $H^{-1}S$

(m 2.2 If $\therefore \frac{1}{n} = \frac{S'}{S} Y_{[n,c]}^*$ and $\therefore \frac{1}{2} = \frac{S'H^{-1}}{S'H^{-1}} Y_{[n,c]}^*$ are two unbiased

ors of ... with variances given by (10) and **Example 2.2** If $\hat{L}_1 = \frac{5'}{5'} \sum_{k=1}^{K} Y_{k,k}^2$ and $\hat{L}_2 = \frac{5'H^{-1}}{5'} Y_{k,k}^*$ are two unbiased

mators of ... with variances given by (10) and (11) respectively, then \hat{L}_1 is

re efficient than \hat{L}_2 if $|...|<$ $=\frac{S'}{S'S'}I_{(n,c)}^*$ and $\hat{=}$ $=\frac{S'H^{-1}}{S'H^{-1}S}I_{(n,c)}^*$ are two unbiased
variances given by (10) and (11) respectively, then $\hat{=}$ is
if $|...|< \sqrt{\frac{K_2}{K_1+K_2}}$ where
 $-\frac{1}{S'S}\left|\frac{1}{n}\sum_{i=1}^{n}1\frac{2}{2i}\right|$.
 $-\frac{1}{S'S}\left|\$ $\frac{5}{2}$ = $(1 - \frac{3}{2}) \frac{1}{R} \sum_{1}^{R} \frac{1}{3} \frac{3}{(S'H^{-1}S)^2} + \frac{3}{S'H^{-1}S}$
 n 2.2 If $\frac{5}{2} \sum_{1}^{R} \sum_{n=1}^{R} \frac{1}{2} \frac{1}{(S'H^{-1}S)^2} + \frac{3}{S'H^{-1}S} \sum_{1}^{R} \sum_{1}^{R} \sum_{1}^{R} \sum_{1}^{R} \sum_{1}^{R} \sum_{1}^{R} \sum_{1}^{R} \sum_{1}^{R} \sum_{1}^{R} \$ $(s'H^{-1}s)^2$ $s'H^{-1}s$

*

*

*

*

*

*

*

*
 $s'(H^{-1}s)^2 = s'H^{-1}s$
 $s'(H^{-1}s)^*$
 $s'(H^{-1}s)^*$
 $s'(H^{-1}s)^*$
 $s'(H^{-1}s)^*$
 $s'(H^{-1}s)^*$
 $s'(H^{-1}s)^* + K_1 \dots^2$
 $s'(H^{-1}s)^* + K_1 \dots^2$
 $s'(H^{-1}s)^* + K_2(1 - \dots^2)$
 $s'(H^{-1}s)^* + K_2(1 - \dots^2)$
 $s'(H^{-1}s)^* + K_$ E_2) = (1 – *x*²) $\frac{1}{n} \sum_{i=1}^{n} \frac{1}{i} \frac{2i}{3} \frac{(3i-3i-3i)}{(5i-1i-5i)^2} + \cdots^2 \frac{5}{5} \frac{4i-3i}{3} \frac{5i}{5}$
 n 2.2 *H* $\frac{1}{n_1} = \frac{5^2}{55} Y_{\text{final}}^4$ *and* $\frac{1}{n_2} = \frac{5^2 H^{-1}}{5^2 H^{-1} 5} Y_{\text{final}}^4$ are two unbi estimators of ... with variances given by (10) as

more efficient than $\frac{1}{n^2}$ if $|\ln |\le \sqrt{\frac{K_2}{K_1 + K_2}}$ whe
 $K_1 = \frac{S'HS}{(S^2S)^2} - \frac{1}{S'H^{-1}S}$

and
 $K_2 = \left[\frac{S'H^{-2}S}{(S'H^{-1}S)^2} - \frac{1}{S^2S} \right] \frac{1}{n} \sum_{i=1}^n \frac{1}{2i$ So d:... with variances given by (10) and (11) res

cient than $\frac{1}{n^2}$ if $|\ln |\le \sqrt{\frac{K_2}{K_1 + K_2}}$ where
 $\frac{S'HS}{(S'S)^2} - \frac{1}{S'H^{-1}S}$
 $\left[\frac{S'H^{-2}S}{(S'H^{-1}S)^2} - \frac{1}{S'S}\right] \frac{1}{n} \sum_{i=1}^n \frac{1}{2i}$.
 $\left[\frac{S'H^{-2}S}{(S'H^{-1}S$ estimators of ... with variances given by (10) and (11) respectively, then ..., is

more efficient than ...₂ if $|-|< \sqrt{\frac{K_2}{K_1 + K_2}}|$ where
 $K_1 = \frac{S'HS}{(S+S)^2} = \frac{1}{S'H^{-1}S}$

and
 $K_2 = \left[\frac{S'H^{-2}S}{(S'H^{-1}S)^2} - \frac{1}{S'S}$

$$
K_1 = \frac{S'HS}{(S'S)^2} - \frac{1}{S'H^{-1}S}
$$

and

$$
K_2 = \left[\frac{S'H^{-2}S}{(S'H^{-1}S)^2} - \frac{1}{S'S}\right] \frac{1}{n} \sum_{i=1}^n \frac{1}{2i}.
$$

Since either that
$$
m_2 = 1 + \frac{1}{1} + \frac{1}{1}
$$

$$
Var(\dots_1) = (1 - \dots) \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2i} \frac{1}{S} + \dots \frac{1}{S'H^{-1}S} + K_1 \dots,
$$
\n
$$
Var(\dots_2) = (1 - \dots^2) \frac{1}{n} \sum_{i=1}^{n} \frac{1}{S} + \frac{2}{2i} \frac{1}{S'S} + \dots^2 \frac{1}{S'H^{-1}S} + K_2(1 - \dots^2)
$$
\n
$$
Var(\dots_2) = (1 - \dots^2) \frac{1}{n} \sum_{i=1}^{n} \frac{1}{S'S} + \dots^2 \frac{1}{S'H^{-1}S} + K_2(1 - \dots^2)
$$
\n
$$
Var(\dots_1) < Var(\dots_2) \text{ if } K_1 \dots^2 < K_2(1 - \dots^2).
$$
\n
$$
Var(\dots_1) < Var(\dots_2) \text{ if } K_1 \dots^2 < K_2(1 - \dots^2).
$$
\n
$$
Var(\dots_1) < Var(\dots_2) \text{ if } K_1 \dots^2 < K_2(1 - \dots^2).
$$
\n
$$
Var(\dots_1) < Var(\dots_2) \text{ if } K_1 \dots^2 < K_2(1 - \dots^2).
$$
\n
$$
Var(\dots_1) < Var(\dots_2) \text{ if } K_1 \dots^2 < K_2(1 - \dots^2).
$$
\n
$$
Var(\dots_1) < Var(\dots_2) \text{ if } K_1 \dots^2 < K_2(1 - \dots^2).
$$
\n
$$
Var(\dots_1) < Var(\dots_2) \text{ if } K_1 \dots^2 < K_2(1 - \dots^2).
$$
\n
$$
Var(\dots_1) < Var(\dots_2) \text{ if } K_1 \dots^2 < K_2(1 - \dots^2).
$$
\n
$$
Var(\dots_1) < Var(\dots_2) \text{ if } K_1 \dots^2 < K_2(1 - \dots^2).
$$
\n
$$
Var(\dots_1) < Var(\dots_2) \text{ if } K_1 \dots^2 < K_2(1 - \dots^2).
$$
\n
$$
Var(\dots_1) <
$$

From (15) and (16) , we have

From (15) and (16), we have
\n
$$
Var(\widehat{...}_1) < Var(\widehat{...}_2)
$$
 if $K_1 \dots^2 < K_2(1 - \dots^2)$.
\nThus $\widehat{...}_1$ is more efficient than $\widehat{...}_2$ if
\n
$$
\frac{K_2}{K_1 + K_2}
$$
.
\nThat is,
\n
$$
|\dots| < \sqrt{\frac{K_2}{K_1 + K_2}}
$$
.

is more efficient than \hat{u}_2 if

$$
...^{2} < \frac{K_{2}}{K_{1} + K_{2}}.
$$

That is,

$$
|\ldots| < \sqrt{\frac{K_2}{K_1 + K_2}}.
$$

3. ESTIMATION OF COMMON PARAMETERS \sim_2 AND \uparrow_2

Application of concomitants of order statistics estimation
\n3. ESTIMATION OF COMMON PARAMETERS ~2 AND
$$
\uparrow
$$
 2
\nLet (X_i, Y_i) , $i = 1, 2, ..., n$ be independent bivariate random variables with
\n (X_i, Y_i) having pdf $f_i(x, y)$ of the form
\n
$$
\frac{(2f\uparrow_1\uparrow_2)^{-1}}{\sqrt{1-\frac{y^2}{n}}}\exp\left\{\frac{-2^{-1}}{1-\frac{y^2}{n}}\left[\frac{(x-\frac{y}{n})^2}{\frac{y^2}{n}}-2\frac{(x-\frac{y}{n})(y-\frac{y}{n})}{\frac{y^2}{n}}+\frac{(y-\frac{y}{n})^2}{\frac{y^2}{n}}\right]\right\}
$$
\nfor $i = 1, 2, ..., n$. In this section we estimate the common parameters ~2 and
\n \uparrow under the assumption that $j = 1, 2, ..., n$ are known using concomitants of

lication of concomitants of order statistics *estimation*

3. **ESTIMATION OF COMMON PARAMETERS** \sim_2 **AND** \uparrow_2
 (X_i, Y_i) , $i = 1, 2, ..., n$ be independent bivariate random variables with
 (Y_i) having $pdf \, f_i(x, y$ promitants of order statistics estimation
 MATION OF COMMON PARAMETERS \sim_2 **AND** \uparrow ₂

=1,2,...,*n* be independent bivariate random variables wit

pdf $f_i(x, y)$ of the form
 $\exp\left\{\frac{-2^{-1}}{1-\frac{x^2}{n^2}}\left[\frac{(x$ *ation of concomitants of order statistics* *estimation* 91
 3. ESTIMATION OF COMMON PARAMETERS \sim_2 **AND** \uparrow_2
 $(X_i, Y_i), i = 1, 2, ..., n$ be independent bivariate random variables with

() having pdf $f_i(x, y)$ of *a of concomitants of order statistics* *estimation*
 STIMATION OF COMMON PARAMETERS \sim_2 **AND** \uparrow_2
 Y_i , $i = 1, 2, ..., n$ be independent bivariate random variables with

viving pdf $f_i(x, y)$ of the form
 $\frac{$ concomitants of order statistics estimation
 IMATION OF COMMON PARAMETERS \sim_2 **AND** \uparrow_2
 $i = 1, 2, ..., n$ be independent bivariate random variables with
 $\log pdf f_i(x, y)$ of the form
 $-\exp\left\{\frac{-2^{-1}}{1 - \frac{y^2}{n_1}} \left$ ion of concomitants of order statistics estimation
 ESTIMATION OF COMMON PARAMETERS z_2 AND $\uparrow z_2$
 $\left(\frac{1}{2}, Y_i\right), i = 1, 2, ..., n$ be independent bivariate random variables with

thaving $pdf \ f_1(x, y)$ of the form
 Application of concomitants of order statistics estimation 91

3. **ESTIMATION OF COMMON PARAMETERS** \sim_2 AND \uparrow_2

Let (X_i, Y_i) , $i = 1, 2, ..., n$ be independent bivariate random variables with (X_i, Y_i) having pdf for $i=1,2,...,n$. In this section we estimate the common parameters \sim_2 and \dagger , under the assumption that \ldots ; $i = 1, 2, \ldots, n$ are known using concomitants of order statistics of *inid* random variables.

lication of concomitants of order statistics estimation 91

3. **ESTIMATION OF COMMON PARAMETERS** \sim_2 **AND** \uparrow_2
 (X_i, Y_i) , $i = 1, 2, ..., n$ be independent bivariate random variables with
 \downarrow , \uparrow) having pd Clearly the marginal distributions of X_i and Y_i are $N(\sim_1, \cdot)$ FIERS \sim_2 AND \uparrow_2
iate random variables with
 $\left(\frac{y - \sim_2}{\uparrow_2} + \frac{(y - \sim_2)^2}{\uparrow_2^2}\right)$
common parameters \sim_2 and
known using concomitants of
are $N(\sim_1, \uparrow_1)$ and $N(\sim_2, \uparrow_2)$
denote the marginal pdf and
 $\$ Application of concomitants of order statistics estimation 91
 3. ESTIMATION OF COMMON PARAMETERS -2 **AND** \uparrow ₂

Let (X_i, Y_i) having $pdf \ f_i(x, y)$ of the form
 $\frac{(2f\uparrow, \uparrow,)^{-1}}{\sqrt{1-\frac{2}{\sqrt{1-\cdots}}}}exp\left\{\frac{-2^{-1}}{$ distribution function respectively of each of the X_i 's. Let $f_i(y|x)$ denote the FIERS \sim_2 AND \uparrow_2
te random variables with
 $\left[\frac{y - \sim_2}{2} + \frac{(y - \sim_2)^2}{\uparrow_2^2}\right]$
ommon parameters \sim_2 and
nown using concomitants of
re $N(\sim_1, \uparrow_1)$ and $N(\sim_2, \uparrow_2)$
enote the marginal *pdf* and
's. Let f conditional *pdf* of Y_i given $X_i = x$, $i = 1, 2, ..., n$. Application of concomitants of order statistics estimation

3. **ESTIMATION OF COMMON PARAMETERS** τ_2 **AND** τ_1

Let (X_i, Y_i) having pdf $f_i(x, y)$ of the form
 $\frac{(2f_1^{\dagger} + 1_2)^{-1}}{\sqrt{1 - x_i^2}} \exp\left\{\frac{-2^{-1}}{1 - x_i$

Application of concomitants of order statistics, estimation
\n3. ESTIMATION OF COMMON PARMATTERS
$$
\sim_2
$$
 AND 1,
\nLet (X_1, Y_1) , i=1,2,...,n be independent bivariate random variables with
\n (X_1, Y_1) having pdf $f_1(x, y)$ of the form
\n
$$
\frac{(2f_{1+1}^{-1})^2}{\sqrt{1-\frac{1}{n}}}\exp\left\{\frac{-2r_1}{1-\frac{1}{n}}\left[\frac{(x-x_1)^2}{1-\frac{1}{n}}-2\omega_{1} - \frac{(x-x_1)(y-x_2)}{1+\frac{1}{n}}+\frac{(y-x_2)^2}{1-\frac{2}{n}}\right]\right\}
$$
\nfor $i=1,2,...,n$. In this section we estimate the common parameters \sim_3 and
\n \uparrow , under the assumption that $\omega_{11}i=1,2,...,n$ are known using concomitants of
\norder statistics of *ind* random variables.
\nrespectively for $i=1,2,...,n$. Let $f(x)$ and Y_i are $N(\sim_i, \uparrow, \uparrow)$ and $N(\sim_i, \uparrow, \uparrow)$
\nrespectively for $i=1,2,...,n$. Let $f(x)$ and $F(x)$ denote the marginal *pdf* and
\ndistribution function respectively of each of the X_i 's. Let $f_i(y|x)$ denote the
\nconditional *pdf* of Y_i given $X_i = x$. $i=1,2,...,n$.
\nThen we have,
\n
$$
E[Y_{i=0}^2] = \frac{1}{n}\sum_{i=1}^{n-1}(-\frac{2}{i}+1\frac{2}{3}(1-\omega_{i}^2)+2\omega_{1}^2+5\omega_{12}+\frac{1}{3}\omega_{11}+\frac{2}{3}\omega_{12}+\frac{2}{3}\omega_{13}+\frac{2}{3}\omega_{14}+\frac{2}{3}\omega_{15}+\frac{2}{3}\omega_{16}+\frac{2}{3}\omega_{17}+\frac{2}{3}\omega_{18}+\frac{2}{3}\omega_{19}+\frac{2}{3}\omega_{10}+\frac{2}{3}\omega_{10}+\frac{2}{3}\omega_{11}+\frac{2}{3}\omega_{12}
$$

$$
Var(Y_{[r:n]}) = \frac{1}{2} + (S_{r,r:n} - 1) \frac{1}{n} \sum_{i} \frac{1}{n^{2}} + \frac{1}{2} \frac{1}{n^{2}} \frac{1}{2} \sum_{i} \sum_{i < j} (\frac{1}{n^{2}} - \frac{1}{n^{2}})^{2}
$$
 (18)

$$
E\left[Y_{[rn]}\right] = \frac{1}{n} \sum_{i} \left[1 - \frac{1}{n} \sum_{i} \left(1 - \frac{1}{n} \sum_{i} \frac{1}{n} \right) + 2 - \frac{1}{n} \sum_{i} \frac{
$$

Hence,

$$
Cov\Big[Y_{[r:n]}Y_{[s:n]}\Big] = E\Big[Y_{[r:n]}Y_{[s:n]}\Big] - E\Big[Y_{[r:n]}\Big]E\Big[Y_{[s:n]}\Big]
$$

=
$$
\frac{1}{n(n-1)}\Big|_{2}^{2}S_{r,s:n}\sum_{i \neq j}\cdots_{i} \cdots_{j} - \frac{1}{n^{2}(n-1)}\Big|_{2}^{2}T_{r,n}\Gamma_{s:n}\sum_{i < j}(\cdots_{i} - \cdots_{j})^{2}.
$$
 (19)

Consider the units of bivariate sample in which measurement of the *X* variate can be done easily where as a measurement of *Y* is not so easy or economic. In this case we order the *X* observations and make measurements only on the *Veena T. G. and P. Yageen Thomas*
Consider the units of bivariate sample in which measurement of the *X* variate
can be done easily where as a measurement of *Y* is not so easy or economic. In
this case we order the *X* estimates based on the available concomitants of order statistics. *92*
 Veena T. G. and P. Yageen TR

Consider the units of bivariate sample in which measurement of the X va

can be done easily where as a measurement of Y is not so easy or econom

this case we order the X observations *Veena T. G. and P. Yageen Thomas*

sisider the units of bivariate sample in which measurement of the X variate

be done easily where as a measurement of Y is not so easy or economic. In

contitants $Y_{[t-r;1]} \dots Y_{[t-r;2]}$. *Yeena T. G. and P. Yageen Tho*

Consider the units of bivariate sample in which measurement of the *X* var

can be done easily where as a measurement of *Y* is not so easy or economic

this case we order the *X* observat *Veena T. G. and*

sily where as a measurement of *Y* is not so easy

sily where as a measurement of *Y* is not so easy

order the *X* observations and make measurement
 $Y_{[c+1:n]},..., Y_{[n-c:n]}.$ Now based on this restricted si *Veena T. G. and P. Yageen Thomas*

isider the units of bivariate sample in which measurement of the *X* variate

be done easily where as a measurement of *Y* is not so easy or economic. In

case we order the *X* observat *Veena T. G. and P. Yageen Thomas*

sisider the units of bivariate sample in which measurement of the X variate

be done casily where as a measurement of Y is not so casy or economic. In

case we order the X observations an be done easily where as a measurement of *Y* is not so easy or econon

bis case we order the *X* observations and make measurements only

oncominants $Y_{(c+lm)},..., Y_{(n-cn)}$. Now based on this restricted sample we n

stimate the variance that is $Y_{[r+k]}$, \cdots , $Y_{[n-cn]}$. Now based on this restricted sample we may
attes based on the available concomitants of order statistics.
and $\pi_{n,c} = (Y_{[r+k]1}, Y_{[r+k]2}, \cdots, Y_{[n-cn]})'$.
 $[(Y_{[n,c]}] = -2 + 1 + 2$.
order the *X* observations and make measurements only on the $Y_{\{i+1:n\},\ldots,Y_{\{n-e:n\}}\}}$. Now based on this restricted sample we may use
ed on the available concomitants of order statistics.
 $x+\tan Y_{\{i+2:n\}}\ldots Y_{\{n-e:n\}}'$.
 Veena T. G. and P. Yageen Thomas

or the units of bivariate sample in which measurement of the X variate

done easily where as a measurement of Y is not so easy or economic. In

se we order the X observations and make mea Veeno T. G. and P. November 1 Weights are a measurement of the X variates

units of bivariate same

units of which measurement of Y is not so easy or ecconomic. In

order the X observations and make measurements only on t

Let

$$
Y_{[n,c]} = (Y_{[c+1:n]}, Y_{[c+2:n]}, \ldots, Y_{[n-c:n]})'.
$$

$$
E[Y_{[n,c]}] = -21 + \frac{1}{2}r \tag{20}
$$

$$
\Gamma = \frac{1}{n} \sum_{i=1}^{n} ..._{i} (\Gamma_{c+1:n}, \Gamma_{c+2:n}, ..., \Gamma_{n-c:n})'
$$

Let
\n
$$
Y_{[n,c]} = (Y_{[c+1:n]}, Y_{[c+2:n]}, ..., Y_{[n-c:n]})'.
$$
\nThen
\n
$$
E[Y_{[n,c]}] = -21 + 12r
$$
\nwhere 1 is a column vector of $n - 2c$ ones,
\n
$$
r = \frac{1}{n} \sum_{i=1}^{n} ..._{i} (r_{c+1:n}, r_{c+2:n}, ..., r_{n-c:n})'
$$
\nand the variance covariance matrix of $Y_{[n,c]}$ can be written in the form
\n
$$
D[Y_{[n,c]}] = 12c
$$
\nwhere
\n
$$
(21)
$$

where

$$
\Gamma = \frac{1}{n} \sum_{i=1}^{n} ..._{i} (\Gamma_{c+1:n}, \Gamma_{c+2:n}, ..., \Gamma_{n-c:n})'
$$

the variance covariance matrix of $Y_{[n,c]}$ can be wi

$$
D[Y_{[n,c]}] = \frac{1}{2}G,
$$

ere

$$
= ||g_{rs}||
$$
 given by

$$
g_{rr} = 1 + (S_{r,rn} - 1) \frac{1}{n} \sum_{i} ..._{i}^{2} + \frac{1}{n^{2}} \Gamma_{rn}^{2} \sum_{i < j} (..._{i} - ..._{j})^{2}
$$

for $r \neq s$,

$$
g_{rs} = \frac{1}{n^{2}} S_{rs} \sum_{i} ... \sum_{i} \frac{1}{n^{2}} \sum_{j} (..._{j} - ..._{j})^{2}
$$

mates based on the available concomitants of order statistics.

\n
$$
Y_{[n,c]} = (Y_{[c+1:n]}, Y_{[c+2:n]}, \dots, Y_{[n-c:n]})'.
$$
\nin

\n
$$
E[Y_{[n,c]}] = -21 + 12r
$$
\nwhere 1 is a column vector of $n - 2c$ ones,

\n
$$
r = \frac{1}{n} \sum_{i=1}^{n} \dots \left(r_{c+1:n}, r_{c+2:n}, \dots, r_{n-c:n} \right)'
$$
\nthe variance covariance matrix of $Y_{[n,c]}$ can be written in the form

\n
$$
D[Y_{[n,c]}] = 12r^2 G,
$$
\nwhere

\n
$$
= \|g_{rs}\| \text{ given by}
$$
\n
$$
g_{rr} = 1 + (S_{r,rn} - 1) \frac{1}{n} \sum_{i} \dots \sum_{i=1}^{2} \frac{1}{n^2} r_{rn}^2 \sum_{i < j} \left(\dots - \dots \right)^2
$$
\nfor $r \neq s$,

\n
$$
g_{rs} = \frac{1}{n(n-1)} S_{r, sn} \sum_{i \neq j} \dots \sum_{i} \dots \sum_{i} \frac{1}{n^2 (n-1)} \sum_{i < j} \left(\dots - \dots \right)^2 r_{rn} r_{sn},
$$
\nwhere i and j vary from 1 to n and r and s are such that $c + 1 \leq r < s$.

Let
 $Y_{[n,c]} = (Y_{[c+1:n]}, Y_{[c+2:n]}, ..., Y_{[n-c:n]})'.$

Then
 $E[Y_{[n,c]}] = -\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$

where 1 is a column vector of $n-2c$ ones,
 $\Gamma = \frac{1}{n} \sum_{i=1}^{n} ..._{i} (\Gamma_{c+1:n}, \Gamma_{c+2:n}, ..., \Gamma_{n-c:n})'$

and the variance covariance matrix of $\begin{aligned}\n\mathbb{E}[Y_{[n+1]}, Y_{[n+2n]}, \dots, Y_{[n-cn]})'.\n\end{aligned}$ $\mathbb{E}[Y_{[n,c]}] = -\frac{1}{2} + \frac{1}{2} \int_{-i}^{T} (r_{c+1:n}, r_{c+2:n}, \dots, r_{n-cn})'.\n\end{aligned}$ $\begin{aligned}\n\mathbb{E}[Y_{[n,c]}] &= -\frac{1}{n} \sum_{i=1}^{n} \dots (r_{c+1:n}, r_{c+2:n}, \dots, r_{n-cn})'.\n\end{aligned}$ the variance covari $\frac{1}{n} \sum_{i} \frac{1}{n^{2}} + \frac{1}{n^{2}} \sum_{i} \frac{1}{n^{2}} (\frac{1}{n^{2}} - \frac{1}{n^{3}})$
 $\sum_{i \neq j} \frac{1}{n^{2}} + \frac{1}{n^{2}} \sum_{i \neq j} (\frac{1}{n^{2}} - \frac{1}{n^{3}}) \sum_{i \neq j} (\frac{1}{n^{2}} - \frac{1}{n^{3}})$
rom 1 to *n* and *r* and *s* are such
21) together defines a gen *n*₁] = $\frac{1}{2}$ 1 + $\frac{1}{2}$ *r*

is a column vector of $n - 2c$ ones,
 $\sum_{i=1}^{n} \cdots (r_{c+1:n}, r_{c+2:n}, \dots, r_{n-c:n})'$

ariance covariance matrix of $Y_{[n,c]}$ can be written in the form
 \cdots
 \cdots] = $\frac{1}{2}$ \cdots
 \vdots $Y_{\{x+2n\}},...,Y_{\{n-cn\}})'$.
 $+ \uparrow \frac{1}{2}r$ (20)

mm vector of $n-2c$ ones,
 $\sum_{e+kn} \Gamma_{e+2n},..., \Gamma_{n-cn}y'$

covariance matrix of $Y_{\{n,c\}}$ can be written in the form
 G,

(21)

by

by
 y_y
 y_y
 y_y
 y_y
 y_y
 y_y
 y $I_{\text{[n,c]}} = (Y_{\text{[c+la]}}, Y_{\text{[c+2a]}}, ..., Y_{\text{[n-ca]}})'$.

(20)

i is a column vector of $n-2c$ ones,
 $\frac{1}{n} \sum_{i=1}^{n} ... \left(\mathbf{r}_{\text{[c+la]}} \mathbf{r}_{\text{[c+2a]}}, \mathbf{r}_{\text{[c+2a]}}, ..., \mathbf{r}_{\text{[c+2a]}}\right)'$

variance covariance matrix of $Y_{$ Then
 $E[Y_{(n,r)}] = -\frac{1}{n} + \frac{r}{n}$ (20)

where 1 is a column vector of $n - 2c$ ones,
 $\Gamma = \frac{1}{n} \sum_{i=1}^{n} \cdots (r_{c,1:n}, r_{c,2:n}, \cdots, r_{n,cn})'$

and the variance covariance matrix of $Y_{[n,c]}$ can be written in the form
 $D\left[Y_{[n$ when the $\frac{1}{s}$'s are known and then the *BLUEs* $\frac{1}{s}$ and $\frac{1}{s}$ are given by $S_{r,r;n} - 1) \frac{1}{n} \sum_{i} \frac{1}{n^{2}} + \frac{1}{n^{2}} \Gamma_{rn}^{2} \sum_{i < j} (\frac{1}{n^{2}} - \frac{1}{n^{3}})^{2}$
 $\left(-1\right)^{\frac{1}{n} \sum_{i \neq j} \frac{1}{n^{2}} \cdots \frac{1}{n^{2}} - \frac{1}{n^{2}(n-1)} \sum_{i < j} (\frac{1}{n^{2}} - \frac{1}{n^{3}})^{2} \Gamma_{rn} \Gamma_{sn},$
 j vary from 1 to *n* and *r* and \sum_{r} = 1 + (S_{r,rn} - 1) $\frac{1}{n} \sum_{i} ..._{i}^{2} + \frac{1}{n^{2}} \Gamma_{rn}^{2} \sum_{i < j} (..., -1)$

for $r \neq s$,
 $\sum_{rs} = \frac{1}{n(n-1)} S_{r,s:n} \sum_{i \neq j} ..._{i} ..._{j} - \frac{1}{n^{2}(n-1)} \sum_{i < j} (..., -1)$

e *i* and *j* vary from 1 to *n* and *r* and *s* is

tion ($r_{c+1:n}, r_{c+2:n},...,r_{n-c:n}$)'

ce covariance matrix of $Y_{[n,c]}$ can be
 $\frac{1}{2}G$,

en by
 $r_{r,n} - 1$) $\frac{1}{n} \sum_{i} ..._{i}^{2} + \frac{1}{n^{2}} r_{rn}^{2} \sum_{i < j} (..._{i} - ..._{j})$
 $\frac{1}{n^{3}} S_{r,s:n} \sum_{i \neq j} ..._{i} ..._{j} - \frac{1}{n^{2}(n-1)} \sum_{i < j} (..._{i} - ..._{j})$ *n*<sub>*n_c*] $\int_{t_{c-1}}^{u} ..._{t} (\Gamma_{c+\ln t}, \Gamma_{c+2m}, ..., \Gamma_{n-cm})'$

variance covariance matrix of $Y_{\lfloor n,c \rfloor}$ can be written in the form
 n_c] $= \Gamma^2_2 G$, (21)
 \parallel given by
 $1 + (S_{r,ren} - 1) \frac{1}{n} \sum_{i} ..._{i}^{2} + \frac{1}{n^{2}} \Gamma^2_{rn} \sum_{$ $\int_{\frac{1}{2}}^{n} \int_{-\frac{1}{2}}^{n} (r_{c+1m}, \Gamma_{c+2m}, \ldots, \Gamma_{n-cm})'$

riance covariance matrix of $Y_{\{n,c\}}$ can be written in the form
 $\int_{0}^{1} = 1 \frac{1}{s} G,$ (21)

given by
 $+(S_{r,cn} - 1) \frac{1}{n} \sum_{i} \ldots^{2}_{i} + \frac{1}{n^{2}} \Gamma_{rs}^{2} \sum_{i \leq$ $g_{rs} = \frac{1}{n(n-1)} S_{r,s;n} \sum_{i \neq j} ..._{i} ..._{j} - \frac{1}{n^{2}(n-1)} \sum_{i < j} (..._{i} - \frac{1}{n(n-1)})$
where *i* and *j* vary from 1 to *n* and *r* and *s* are
Equations (20) and (21) together defines a gen
when the $..._{i}$'s are known and then th $I_{rs} = \frac{1}{n(n-1)} S_{r,s:n} \sum_{i \neq j} ..._{i} ..._{j} - \frac{1}{n^{2}(n-1)} \sum_{i < j} (...,$

e *i* and *j* vary from 1 to *n* and *r* and *s*

tions (20) and (21) together defines a g

the $...$'s are known and then the *BLUEs*
 $I_{2} = \frac{\Gamma'G^{-1}(\Gamma'1'$ *n,c*] $\left[\int_0^{\pi} 1 + (S_{r,r,n} - 1) \frac{1}{n} \sum_{i} \frac{1}{n} + \frac{1}{n^2} \int_0^2 \sum_{i \in J} (m_i - m_j)t^2 dt\right]$
 $\pi \neq s$,
 $\frac{1}{n(n-1)} S_{r,s,n} \sum_{i \neq j} \frac{1}{n(n-1)} \sum_{i \in J} (m_i - m_i)t^2 dt$

and *j* vary from 1 to *n* and *r* and *s* are

is (20) and (, *n c G G Y* s,
 $\frac{1}{(n-1)}$ S_{r,sn} $\sum_{i \neq j}$ _{*"i'i"*j} $-\frac{1}{n^2(n-1)} \sum_{i \leq j}$ (*..._i* $-\frac{1}{n^3}$)²r_{rn}r_{sn},

1 *j* vary from 1 to *n* and *r* and *s* are such that $c + 1 \leq r < s$

20) and (21) together defines a generalized mante extrainmental on $\sin A = \frac{1}{\ln a}$ and a strain in the lotting
 $\sin A = \frac{1}{a} \int_{a}^{a} \cos A = \frac{1}{b} \int_{a}^{a} \frac{1}{a^{2}} \int_{a}^{a} \frac{1}{a^{2}} \int_{a}^{a} \frac{1}{a^{2}} \int_{a}^{a} (m_{1} - m_{1})^{2}$
 $\neq s$,
 $\frac{1}{n(n-1)} S_{r,m} \sum_{m} m_{1} = \frac{1}{n^{2}(n-1$ $G = ||g_{tt}||$ given by
 $g_{tt} = 1 + (S_{t,rm} - 1) \frac{1}{n} \sum_{i} -\frac{2}{i} + \frac{1}{n^2} \Gamma_{em}^2 \sum_{i \in I} (-1 - \frac{1}{n})^2$

and for $r \neq s$,
 $g_{xt} = \frac{1}{n(n-1)} S_{t,xx} \sum_{i \neq j} (-1 - \frac{1}{n^2} \sum_{i \neq j} (-1 - \frac{1}{n})^2 \Gamma_{tx} \Gamma_{ext},$

where *i* and *j* vary fr

$$
E_2 = \frac{\Gamma' G^{-1} (\Gamma' 1' - 1 \Gamma') G^{-1}}{\Delta} Y_{[n,c]}
$$

$$
T_2 = \frac{1'G^{-1}(1r' - r1')G^{-1}}{\Delta} Y_{[n,c]},
$$

$$
\Delta = (\Gamma' G^{-1} \Gamma)(1' G^{-1} 1) - (\Gamma' G^{-1} 1)^2.
$$

The variances of the above estimators are given by

lication of concomitants of order statistics estimation

\nvariances of the above estimators are given by

\n
$$
Var(\epsilon_2) = \frac{\Gamma' G^{-1} \Gamma}{\Delta} \frac{1}{2}
$$
\n
$$
Var(\tau_2) = \frac{\Gamma' G^{-1} \Gamma}{\Delta} \frac{1}{2}.
$$

and

\n *ication of concomitants of order statistics ... estimation*
\n
\n variances of the above estimators are given by\n

\n\n
$$
Var(\hat{\zeta}_2) = \frac{\Gamma' G^{-1} \Gamma}{\Delta} \hat{\zeta}_2^2
$$
\n

\n\n
$$
Var(\hat{\zeta}_2) = \frac{\Gamma' G^{-1} \Gamma}{\Delta} \hat{\zeta}_2^2.
$$
\n

ion of concomitants of order statistics estimation

iances of the above estimators are given by
 $(\frac{c}{2}) = \frac{\Gamma' G^{-1} \Gamma}{\Delta} \frac{1}{2}$
 $(\Gamma_2) = \frac{\Gamma' G^{-1} \Gamma}{\Delta} \frac{1}{2}$.
 Γ that $\frac{c}{2}$ and Γ_2 are linear functio *Variances* of the above estimators are given by
 $Var(\hat{\zeta}_2) = \frac{\Gamma' G^{-1} \Gamma}{\Delta} \hat{\zeta}_2^2$
 $Var(\hat{\zeta}_2) = \frac{\Gamma' G^{-1} \Gamma}{\Delta} \hat{\zeta}_2^2$
 $Var(\hat{\zeta}_2) = \frac{\Gamma G^{-1} \Gamma}{\Delta} \hat{\zeta}_2^2$
 $Var(\hat{\zeta}_2) = \frac{\Gamma G^{-1} \Gamma}{\Delta} \hat{\zeta}_2^2$
 $Var(\hat{\zeta}_2) = \frac{\Gamma G^{-1} \Gamma$ It is clear that \hat{z}_2 and \hat{T}_2 are linear functions of the concomitants and hence we can write variances of the above estimate
 $Var(\hat{\tau}_2) = \frac{\Gamma' G^{-1} \Gamma}{\Delta} \hat{\tau}_2^2$
 $Var(\hat{\tau}_2) = \frac{\Gamma' G^{-1} \Gamma}{\Delta} \hat{\tau}_2^2$.

Elear that $\hat{\tau}_2$ and $\hat{\tau}_2$ are linear

vite
 $\tau_2 = \sum_{r=c+1}^{n-c} a_r Y_{[r:n]}$ all integrals of the above estint
 \hat{f}_2) = $\frac{\Gamma' G^{-1} \Gamma}{\Delta} \frac{d}{dt}$
 Γ_2) = $\frac{d^2 G^{-1} \Gamma}{d} \frac{d}{dt} \frac{d}{dt}$
 Γ_2 and Γ_2 are li
 $\sum_{r=0}^{n-c} a_r Y_{r,n}$ of the above estimators and
 $r = \frac{r'G^{-1}r}{\Delta} + \frac{2}{2}$
 $\frac{1'}{\Delta} = \frac{1'}{2}$
 $\frac{1'}{2}$ and $\frac{1}{2}$ are linear functions.
 $r = rT_{[r,n]}$ *lication of concomitants of order statistics* *estimation*

variances of the above estimators are given by
 $Var(\tilde{\tau}_2) = \frac{\Gamma'G^{-1}r}{\Delta} \tilde{\tau}_2^2$
 $Var(\tilde{\tau}_2) = \frac{\Gamma'G^{-1}1}{\Delta} \tilde{\tau}_2^2$.

clear that $\tilde{\tau}_2$ and $\tilde{\$ Transies of the above estimators are given by
 $tr(\hat{\tau}_2) = \frac{r'G^{-1}r}{\Delta} \hat{\tau}_2^2$
 $tr(\hat{\tau}_2) = \frac{1'G^{-1}1}{\Delta} \hat{\tau}_2^2$.

ear that $\hat{\tau}_2$ and $\hat{\tau}_2$ are linear functions of the concomitants and hence we

tite
 $= \sum_{r=c+1}^{$ $Var(\overline{\Gamma}_2) = \frac{1'G^{-1}1}{\Delta} \overline{\Gamma}_2^2.$

Elear that $\frac{1}{r_2}$ and $\overline{\Gamma}_2$ are linea

vrite
 $2 = \sum_{r=c+1}^{n-c} a_r Y_{[r:n]}$
 $2 = \sum_{r=c+1}^{n-c} b_r Y_{[r:n]}$,
 $2 = a_r b_r$, $r = c + 1, c + 2, ..., n - c$ \mathcal{F}_2) = $\frac{1'G^{-1}1}{\Delta} \mathcal{F}_2^2$.

that \mathcal{F}_2 and \mathcal{F}_2 are li
 $\sum_{n=c+1}^{n-c} a_r Y_{[r:n]}$
 $\sum_{n=c+1}^{n-c} b_r Y_{[r:n]}$,
 b_r , $r = c + 1, c + 2, ..., n - 1$ $r = \frac{1'G^{-1}1}{\Delta} \tau_2^2$.
 ϵ_2 and τ_2 are linear functions $r_r Y_{r,n}$
 $r_r Y_{r,n}$,
 $r = c + 1, c + 2, ..., n - c$ are considered in the set of different velocies $\begin{aligned} \n\text{tr}(\mathbf{f}_2) &= \frac{\mathbf{1}'G^{-1}\mathbf{1}}{\Delta}\mathbf{1}\frac{2}{2}. \n\end{aligned}$

ear that \mathcal{F}_2 and \mathbf{f}_2 are linear functions of the concomitants and hence we
 $\text{tr} = \sum_{r=c+1}^{n-c} a_r Y_{[r,n]}$
 $= \sum_{r=c+1}^{n-c} b_r Y_{[r,n]}$,
 $a_r b_r, r = c +$

$$
\widehat{Z}_2 = \sum_{r=c+1}^{n-c} a_r Y_{[rn]}
$$

and

$$
\Gamma_2 = \sum_{r=c+1}^{n-c} b_r Y_{[r:n]},
$$

riances of the above estimators are given by
 $Var(\tilde{\zeta}_2) = \frac{\Gamma' G^{-1} r}{\Delta} \tilde{\zeta}_2^2$
 $Var(\tilde{\zeta}_2) = \frac{r' G^{-1} r}{\Delta} \tilde{\zeta}_2^2$
 $Var(\tilde{\zeta}_2) = \frac{r' G^{-1} r}{\Delta} \tilde{\zeta}_2^2$
 $Var(\tilde{\zeta}_2) = \frac{r}{\Delta} \tilde{\zeta}_2^2$
 $Var(\tilde{\zeta}_2) = \sum_{r=c+1}^{n-c$ Application of concomitants of order statistics

The variances of the above estimators are given
 $Var(\tilde{\tau}_2) = \frac{\Gamma'G^{-1}\Gamma}{\Delta} \tilde{\tau}_2^2$

and
 $Var(\tilde{\tau}_2) = \frac{\Gamma'G^{-1}\Gamma}{\Delta} \tilde{\tau}_2^2$.

It is clear that $\tilde{\tau}_2$ and \til *riances* of the above estimators are given by
 $r(\frac{c}{2}) = \frac{r'G^{-1}r}{\Delta} + \frac{2}{2}$
 $r(\frac{r}{2}) = \frac{r'G^{-1}r}{\Delta} + \frac{2}{2}$.
 $r(\frac{r}{2}) = \frac{rG^{-1}r}{\Delta} + \frac{2}{2}$.
 $r(\frac{r}{2}) = \sum_{r=1}^{n} a_r Y_{(r,n)}$
 $a_r \sum_{r=1}^{n} a_r Y_{(r,n)}$.
 $a_r \sum_{r=1}^{$ It is clear that $\frac{1}{r_2}$ and $\frac{1}{r_2}$ are
can write
 $\frac{1}{r_2} = \sum_{r=c+1}^{n-c} a_r Y_{r,n}$
and
 $\frac{1}{r_2} = \sum_{r=c+1}^{n-c} b_r Y_{r,n}$,
where $a_r b_r$, $r = c + 1$, $c + 2$,..., *n*
The values of $\Gamma_{r,n}$ for differe
and those of S_{r,s The values of r_{r_n} for different values of *r* and *n* are given in Harter (1961) can write
 $\epsilon_2 = \sum_{r=e+1}^{n-c} a_r Y_{[r,n]}$

and
 $\Gamma_2 = \sum_{r=e+1}^{n-c} b_r Y_{[r,n]}$,

where $a_r b_r$, $r = c + 1, c + 2, ..., n - c$ are constants which can be determined.

The values of $r_{r,n}$ for different values of *r* and *n* are given in Sa $Var(\tilde{\tau}_2) = \frac{16\pi^4}{\Delta} \tilde{\tau}_2^2$

and

and
 $Var(\tilde{\tau}_2) = \frac{16\pi^4}{\Delta} \tilde{\tau}_2^2$,

It is clear that $\tilde{\tau}_2$ and $\tilde{\tau}_2$ are linear functions of the concomitants and hence we

can write
 $\tilde{\tau}_2 = \sum_{r=1}^{n_c} a_r Y_{[rn]}$

a *r r f f f <i>f f f <i>f f f <i>f* *****<i>f <i>f <i>f <i>f <i>f <i>f <i>f <i>f <i>f <i>f* *****<i>f <i>f <i>f <i>f <i>f <i>f <i><i>f**<i><i>f**<i><i>* easily determined using *MATHCAD* software. For an illustration, let us assume that *k* of the observations are from a bivariate normal population with correlation coefficient \mathbb{I} and the remaining $n-k$ observations are from a remaintant in the concomitants and hence we
 n $h - c$ are constants which can be determined.

From tradues of r and n are given in Harter (1961)

remt values of r, s and n are given in Sarhan and

the constants $a,b_r, r = c+$ bivariate normal population with correlation coefficient \ldots . Then we have It is clear that $\frac{1}{2}$ and $\frac{1}{2}$ are linear functions of the concomitants and hence we
can write
 $\frac{1}{2} = \sum_{n=1}^{n} a_n Y_{[rn]}$,

where $a_i b_r, r = c + 1, c + 2, ..., n - c$ are constants which can be determined.

The values of ants which can be determined.
 r and *n* are given in Harter (1961)
 r, *s* and *n* are given in Harter (1961)
 r, *s* and *n* are given in Sarhan and
 $a_r b_r$, $r = c + 1$, $c + 2$, ..., $n - c$ can be

be bivariate norma variances of the estimators ϵ_2 and ϵ_1 for ϵ_3 (..., ..., ...) = (0.8, 0.7), (0.6, for the concomitants and hence we

tants which can be determined.
 r and *n* are given in Harter (1961)
 r, *s* and *n* are given in Sarhan and
 $a, b, r = c + 1, c + 2, ..., n - c$ can be

are. For an illustration, let us assume
 $n = 5$. The values are given in the following tables. From tables numbered 1 to 4, we observe that both \sim_2 and $\rm \dagger$ are estimated with more precision for larger values of μ_i 's than for the cases with smaller values of μ_i 's. Since $Var(\hat{\zeta}_2)$ is be determined.

ven in Harter (1961)

given in Sarhan and
 $+2,...,n-c$ can be

ration, let us assume

aal population with

rvations are from a
 $\frac{1}{2}$. Then we have
 $\frac{2}{2},...,n-c$ and the
 $\frac{8}{2},0.7$, (0.6,0.5) for

able and
 $\Gamma_2 = \sum_{r=\epsilon+1}^{n_{\epsilon}} b_r Y_{[r,n]}$,

where $a_r b_r$, $r = c + 1, c + 2, ..., n - c$ are constants which can be determined

The values of $r_{r,n}$ for different values of r and n are given in Harter

and those of $S_{r,n}$ for differe \mathcal{F}_2) for the concomitants of order statistics for a given collection of random variables we infer that concomitants of order statistics of *inid* n normal random variables can be more profitably used for estimating \sim , than for estimating \dagger ₂. Very rarely in problems of estimation of common parameters of several distributions, explicit expression for the values of the proposed estimator exists. However in our method it can be explicitly expressed and hence we can determine the quality of our estimator as well.

94								Veena T. G. and P. Yageen Thomas
								Table 1: Coefficients a_i 's in the <i>BLUE</i> $\hat{z}_2 = \sum_{n=1}^{n-c} a_r Y_{[rn]}$ and $Var(\hat{z}_2) / \hat{z}_2^2$ for
			$m_1 = 0.8, m_2 = 0.7$					
\boldsymbol{n}	\boldsymbol{c}	\boldsymbol{k}	a_{1}	a_{2}	a ₃	\mathfrak{a}_4	a ₅	$Var(\widehat{\cdot}_2)/\!\uparrow^2_2$
5	$\boldsymbol{0}$	$\mathbf{1}$	0.1995	0.2003	0.2004	0.2003	0.1995	0.2000
		\overline{c}	0.1991	0.2005	0.2008	0.2005	0.1991	0.2000
		3	0.1991	0.2005	0.2008	0.2005	0.1991	0.2000
		4	0.1994	0.2003	0.2006	0.2003	0.1994	0.2000
	\mathbf{I}	\perp		0.3370	0.3260	0.3370		0.2779
		\overline{c}		0.3374	0.3253	0.3374		0.2744
		3		0.3379	0.3242	0.3379		0.2713
		4		0.3385	0.3230	0.3385		0.2685
								Table 2: Coefficients b_i 's in the <i>BLUE</i> $\mathbf{f}_2 = \sum_{r=a+1}^{n-c} b_r Y_{[r:n]}$ and $Var(\mathbf{f}_2) / \mathbf{f}_2^2$ for
			$m_1 = 0.8, m_2 = 0.7$.					
\boldsymbol{n}	\boldsymbol{c}	\boldsymbol{k}	b ₁	b ₂	b ₃	b ₄	b_5	$Var(\hat{\mathsf{T}}_2)/\hat{\mathsf{T}}_2^2$
5	$\boldsymbol{0}$	1	-0.5064	-0.2132	0.0000	0.2132	0.5064	0.4243
		\overline{c}	-0.4927	-0.2076	0.0000	0.2076	0.4927	0.3921
					0.0000	0.2018	0.4798	0.3625

Table 1: Coefficients *a_i* 's in the *BLUE* $\sum_{r=c+1}^{n-c} a_r Y_{[rn]}$ and $Var(\hat{\xi}_2) / \hat{\tau}_2^2$ for
 $\sum_{r=1}^{n} a_r = 0.8, \quad \sum_{r=2}^{n} a_r = 0.7$ *ena T. G. and P. Yageer*
 $\sum_{n=c+1}^{n-c} a_r Y_{[r:n]}$ and $Var(\hat{z}_2)$ *r r f*_{(*rm*]} and *Var*($\frac{2}{3}$)/ $\frac{1}{2}$ for $\epsilon_2 = \sum_{r=0}^{n-c} a_r Y_{(r,n)}$ and $Var(\epsilon_2)/\tau_2^2$ for Veena T. G. and P. Yageen Thomas
= $\sum_{r=c+1}^{n-c} a_r Y_{[r:n]}$ and $Var(\tilde{\cdot}_2) / \tilde{\cdot}_2^2$ for

 $\frac{1}{4}$ $\mathcal{F}_2 = \sum_{r=0}^{n-c} b_r Y_{r-1}$ and $Var(\mathcal{F}_2) / \mathcal{F}_2^2$ for

			$m_1 = 0.8, m_2 = 0.7$.					
n	\mathcal{C}	\boldsymbol{k}	b ₁	b ₂	b_3	b_4	b_5	$Var(\hat{T}_2)/\hat{T}_2^2$
5	$\boldsymbol{0}$	$\mathbf{1}$	-0.5064	-0.2132	0.0000	0.2132	0.5064	0.4243
		$\overline{2}$	-0.4927	-0.2076	0.0000	0.2076	0.4927	0.3921
		3	-0.4798	-0.2018	0.0000	0.2018	0.4798	0.3625
		$\overline{4}$	-0.4678	-0.1959	0.0000	0.1959	0.4678	0.3350
		1		-1.4033	0.0000	1.4033		2.2230
	1	$\overline{2}$		-1.3644	0.0000	1.3644		2.0105
		3		-1.3291	0.0000	1.3291		1.8175
		4		-1.2949	0.0000	1.2949		1.6404

Application of concomitants of order statistics estimation
 Table 3: Coefficients a_i 's in the BLUE $\hat{=}$ ₂ = $\sum_{r=c+1}^{n-c} a_r Y_{[r:n]}$ and $Var(\hat{=}$ ₂)/
 \therefore ₁ = 0.6, \therefore ₂ = 0.5 *n*-c
 $\sum_{n=c+1}^{n-c} a_r Y_{[r:n]}$ and $Var(\hat{\sigma})$ *rtion* 9
 r $\left(\frac{r}{r} Y_{[r:n]} \right)$ and $Var(\hat{z}_2) / \hat{z}_2$ for $\left(\frac{r}{r} \right)$ is $\left(\frac{r}{r} \right)$ is $\left(\frac{r}{r} \right)$ $\epsilon_2 = \sum_{r=0}^{n-c} a_r Y_{r,n}$ and $Var(\epsilon_2)/\tau_2^2$ for .. estimation 95
= $\sum_{r=c+1}^{n-c} a_r Y_{[rn]}$ and $Var(\hat{\cdot}_2) / \hat{\cdot}_2^2$ for

		Application of concomitants of order statistics estimation					95
							Table 3: Coefficients a_i 's in the BLUE $\hat{z}_2 = \sum_{n=1}^{n-c} a_n Y_{[rn]}$ and $Var(\hat{z}_2) / \hat{z}_2$ for
		$m_1 = 0.6, m_2 = 0.5$					
\boldsymbol{c} \boldsymbol{n}	\boldsymbol{k}	a_{1}	a_{2}	a ₃	\boldsymbol{a}_4	a ₅	$Var(\frac{c}{2})/\frac{1}{2}$
	$\mathbf{1}$	0.1995	0.2003	0.2004	0.2003	0.1995	0.2001
5 $\boldsymbol{0}$							
	\overline{c}	0.1994	0.2003	0.2006	0.2003	0.1994	0.2001
	3	0.1994	0.2003	0.2006	0.2003	0.1994	0.2001
	4	0.1996	0.2002	0.2004	0.2002	0.1996	0.2001
	$\mathbf{1}$		0.3351	0.3298	0.3351		0.3050
2	\overline{c}		0.3350	0.3300	0.3350		0.3010
	3		0.3350	0.3300	0.3350		0.2999

 $\mathcal{F}_2 = \sum_{r=0}^{n-c} b_r Y_{r+n}$ and $Var(\mathcal{F}_2) / \mathcal{F}_2^2$ for $n_1 = 0.6, \ldots, = 0.5$.

Acknowledgments

The authors are highly thankful for the valuable comments of the referee. The first author wishes to thank the CSIR for financial assistance during the period of research work in the form of CSIR-JRF.

REFERENCES

Balakrishnan, N. and Cohen, A.C. (1991): *Order Statistics and Inference: Estimation Methods*, San Diego: Academic Press, New York.

Beg, M.I. (1991): Recurrence relations and identities for product moments of order statistics corresponding to non-identically distributed variables, *Sankhya* **A***,* **53**, 365-374.

Beg, M.I. and Ahsanullah, M. (2007): Concomitants of generalized order statistics in Gumbel's bivariate exponential distribution, *J. Stat. Theory Appl.,* **6**, 118-132.

Chacko, M. (2007): *On Concomitants of Order Statistics*, Unpublished Ph.D. Thesis, University of Kerala.

Chacko, M. and Thomas, P.Y. (2008): Estimation of parameters of bivariate normal distribution using concomitants of record values, *Statist. Papers,* **49**, 263-275.

David H.A. and Nagaraja H.N., (1998): Concomitants of order statistics, *In Handbook of Statistics, 16, Eds: N. Balakrishnan and C.R.Rao*, Elsevier, Amsterdam.

David H.A. and Nagaraja H.N., (2003): *Order Statistics*, *Third Edition*, John Wiley and Sons, New York.

Eryilmaz S., (2005): Concomitants in a sequence of independent non-identically distributed random vectors, *Comm. Statist. Theory Methods,* **34**, 1925-1933.

Harter, H.L. (1961): Expected values of normal order statistics, *Biometrika,* **48**, 151-165.

Nagaraja, H.N. and David, H.A. (1994): Distribution of the maximum of concomitants of selected order statistics, *Ann. Statist.,* **22**, 478-494.

Sajeevkumar, N.K. and Thomas, P.Y. (2005): Applications of order statistics of independent non-identically distributed random variables in estimation, *Comm. Statist. Theory Methods,* **34**, 775–783.

Samuel, P. and Thomas, P.Y. (1998): Modified expression for a recurrence relation on the product moments of order statistics, *Statist. Probab. Lett.,* **37**, 89- 95.

Sarhan, A.E. and Greenberg, B.G. (1956): Estimation of location and scale parameters by order statistics from singly and doubly censored samples, *Ann. Math. Statist.,* **27**, 427-451.

Thomas, P.Y. and Sajeevkumar, N.K. (2005): Estimation of the common parameter of several exponential distributions, *IAPQR Transactions,* **30**, 125- 134.

Vaughan, R.J. and Venables, W.N. (1972): Permanent expressions for order statistic densities, *J. R. Stat. Soc. Ser. B Stat. Methodol.,* **34**, 308-310.

Veena, T.G. and Thomas, P.Y. (2011): Application of concomitants of order statistics of independent non-identically distributed random variables in estimation. *Comm. Statist. Theory Method* (*Accepted*)*.*

Received: 26.07.2012

Revised: 31.10.2012

Veena T. G. and P. Yageen Thomas

Department of Statistics University of Kerala Trivandrum-695 581 India

Email: veenashine@yahoo.co.in yageenthomas@gmail.com