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ABSTRACT 

In this paper, we consider some finite mixtures of intervened Poisson 
distribution and study some of their properties. The identifiability 

conditions of the mixture models are derived and parameters of these 

mixtures are estimated by method of factorial moments, method of mixed 

moments and method of maximum likelihood. Further, this mixture 
distribution is fitted to some real life data-sets and compared with mixtures 

of positive Poisson distribution. 

 

1. INTRODUCTION 

Finite mixtures of distributions have provided a mathematical based approach to 

the statistical modeling of a wide variety of random phenomena. Because of 
their usefulness as an extremely flexible method of modeling, finite mixture 

models have an increasing attention over the years from practical and theoretical 

point of view. Indeed, in the past decade the extent and the potential of the 

application of finite mixture models have widened considerably. Application of 
mixture models spread over astronomy, biology, genetics, medicine, psychiatry, 

economics, engineering, marketing and other fields in the biological, physical 

and social sciences. For details see McLachlan and Peel (2000). In many of these 
applications, finite mixture models support a variety of techniques in major areas 

of statistics including cluster and latent class analysis, discriminant analysis, 

image analysis and survival analysis. 

Shanmugam (1985) introduced the intervened Poisson distribution ( IPD ) as a 

replacement for the positive Poisson distribution in situations when some 
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intervention process may alter the mean of the rare event generating process 

under observation. An advantage of the IPD  is that it provides information on 
how effective various preventive actions taken by health service agents where 

positive Poisson fails. The IPD  is applicable in several areas such as reliability 

analysis, queuing problems, epidemiological studies etc. For example, see 

Shanmugam (1985, 1992), Huang and Fung (1989) and Kumar and Shibu (2011, 
2012). During the observational period, the failed units are either replaced by 

new units or rebuilt. This kind of replacement changes the reliability of a system 

as only some of its components have longer life. 

Let V  be the number of instances of some rare events distributed according to a 

Poisson distribution with parameter λ . Assume that the observational process is 

such that only positive values of V   are observed. Let 1U denote the positive 

observed number of occurrences of this rare event. Then 1U has a positive 

Poisson distribution with probability mass function ( pmf ). 
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where 0>λ and ,...2,1=w .In particular, let V the number of cholera cases in a 

household. 0=V  is not observable since the observational apparatus is activated 

only when 0>V .Thus after 1U  is generated, some intervention mechanism 

changes λ  to λρ where 0≥ρ . Let 2U  be the number of occurrences generated 

after this intervention. The random variable 2U  is Poisson with mean 0≥ρ   and 

is statistically independent of 1U . Assume that our observational apparatus has a 

record of only the random variable 21 UUU += , the total number of rare events 

occurred altogether is an intervened Poisson distribution with parameters λ  and 

λρ . The pmf  of IPD  is given by 
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with 0>λ  and 0≥ρ  for those values of u  on the positive integers, and zero 

elsewhere. 

Throughout this paper, we assume that g  is a positive integer greater than one. 

Let X  be a discrete random variable with pmf  )()( xXPxp == of the form 

)(...)()()( 2211 xpxpxpxp ggααα +++=
 
where for each gj ,...,2,1= , 0>jα  
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such that ∑
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and 0)( ≥xp j  such that∑ =
x

j xp 1)( . Then we say that X  

has a mixture distribution and )(xp is a finite mixture distribution. The 

parameters gααα ,...,, 21 are known as mixing weights and gppp ,...,, 21 , the 

components of the mixture. We denote Θ  as the collection of all distinct 

parameters occuring in the components and ψ  as the complete collection of all 

distinct parameters occuring in the mixture model. 

Let { },:),( RxxF jj ∈Θ∈=∆ θθ  be the class of distribution functions from 

which mixtures are to be formed. We identify the class of finite mixtures of ∆  
with the appropriate class of distribution functions, defined by 

( ) },...,2,1,;,0),,()(:)({ˆ
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the convex hull of ∆ , we denote ),( jxF θ by )(xF j  or simply jF  and the 

mixture by ∑
=

=
g

j

jj FH

1

α . 

We need the following theorem from Titteringtonet.al. (1985) in order to 

establish the identifiability condition of the mixture models considered in this 

paper. 

Theorem 1.1 (Titterington et.al., 1985) A necessary and sufficient condition  for 
H  to be identifiable is that ∆  is linearly independent over the field of real 

numbers. 

There is a great interest in the finite mixture models of Poisson distribution and 

its application in several areas of research including social and applied sciences. 
For a detailed account of this, see Mc Lachlan and Peel (2000) and references 

therein. But, Poisson mixture models are not suitable for situations where 

intervention arises. As such, through this paper, we introduced finite mixtures of 
IPD  and study some of its important aspects. In section 2, we present the 

definition and some properties of the g component mixture of IPDs  and in 

section 3, we discuss the estimation of the parameters of the IPD mixture model. 

Two real life data sets are also considered in section 3 to illustrate the usefulness 
of IPD  mixture models. Data illustration and concluding remarks are given in 

section 4. 
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2. MIXTURES OF g  
COMPONENT INTERVENED POISSON 

DISTRIBUTION 

Definition 2.1 A random variable Y  is said to have a g component mixture of 

IPDs  if it has the following pmf )()( xYPxf == , in which 10 ≤≤ iα  for 

gi ,...,2,1=  with ∑
=

=
g

i
i

1

1α  and ,...2,1=x  

∑
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g

i
ii xfxf

1
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where 
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with 0>iλ , 0≥iρ
 
for each  .,...,2,1 gi =  

Here after, we denote the distribution 

with pmf (2.1) by gMIPD . Now we present the identifiability condition of the  

gMIPD   through the following proposition. 

Proposition 2.1  

The identifiability condition for gMIPD with pmf )(xf  given in (2.1) is 

ji λλ ≠ , ji ρρ ≠  for ji ≠  taking values from g,...,2,1  and ,...2,1=x  

Proof Assuming 2=g  and consider the equation 

0)()( 2211 =+ xFbxFb           (2.3) 

where 1b  and 2b  are any two arbitrary real numbers, ∑
=

=
x

j

jfxF

1

1 )()(  and 

∑
=
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x

j

jxF

1

2 )()( φ  for ,...2,1=x in which )( jφ   obtained from )( jf by replacing 

jλ  by jµ , jρ
 
by jδ . Assume that for each 2,1=i , ii µλ ≠  and ii δρ ≠ . 

Thus 
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Now from equations (2.3), (2.4) and (2.5), we have the following: 

0]
)1(

})1{(

)1(

})1{(
[

!

1
1

22
21

1

11
1

222111

=
−

−+
+

−

−+
∑
=

j
jj

j
x

j

jj

ee
b

ee
b

j
µ

ρρ
λ

ρρ
λρλλρλ

     

(2.6) 

0]
)1(

})1{(

)1(

})1{(
[

!

1
2

22
22

1

22
1

222222

=
−

−+
+

−

−+
∑
=

j
jj

j
x

j

jj

ee
b

ee
b

j
µ

δδ
λ

ρρ
µµλλρλ

     (2.7) 

Equations (2.6) and (2.7) yield the following. 
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which implies that 02 =b and then from (2.3), we get 01 =b . This shows that 1F  

and 2F  are linearly independent. Hence by theorem 1.1, the proof follows. 

Proposition 2.2  

The mean and variance of gMIPD with pmf )(xf given in (2.1) are the 

following. 
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The proof is simple and hence omitted.      

Proposition 2.3  

For gi ,...,2,1= ,  the gMIPD is under-dispersed for all values of iα
 
such that 

0,10 >≤≤ ii λα
 
and 0≥iρ such that ∑
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+<++
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it is over dispersed otherwise. 

Proof   From (2.9) and (2.12), the proof is obvious. 

Proposition 2.4  

The probability generating function ( pgf ) of gMIPD  with pmf  (2.1) is the 

following. 
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Proof   By definition, the pgf  of gMIPD with pmf  (2.1) is  
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On simplifying (2.14) and equating the coefficient of x
s , we get (2.13). 

Proposition 2.5  

The thr −  factorial moment [ ]rµ  of gMIPD is the following for ,...2,1=r  
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Proof By definition, the thr −  
factorial moment  [ ]rµ of gMIPD  is  
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Now the proof follows from (2.1). 

Proposition 2.6  

The thr −  
raw moment rm of the gMIPD is the following, for ,...2,1=r in 

which sjrS )',(  
are Stirling numbers of the second kind (Johnson et.al., 2005, 

p.12) 
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where for gi ,...,2,1=  and ,...,1,0=j  
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Proof From (2.13), we have 
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Replacing s   by  it
e  in (2.18), we get the characteristic function  

)()( itePt =φ of the gMIPD
 
as  
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On replacing r
u  in terms of Stirling numbers of the second kind, we get (2.16). 

 

3. ESTIMATION 

In this section we discuss the estimation of the parameters of the mixture model 

gMIPD  for 3,2=g    by method of mixed moments, method of factorial 

moments and method of maximum likelihood. In the method of factorial 

moments, the first five population factorial moments of gMIPD are equated to 

the corresponding sample factorial moments [ ]rτ for 5,4,3,2,1=r and obtain the 

following system of equations in which ),( jiijij ρλΛ=Λ . 

[ ]jjij ταα =Λ−+Λ 2)1(
         

 (3.1) 

for 5,4,3,2,1=j . 

In method of mixed moments, the parameters 121 ,,, ρλλα
 

and 2ρ
 

of the 

2MIPD are estimated by using the first four sample factorial moments and the 

first observed frequency of the distribution. Thus the estimates are obtained by 

solving the equation (3.1) for 4,3,2,1=j along with the following equation. 
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where 1O  is the observed frequency corresponding to the first observed value 

and N , the observed total frequency. 
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In method of maximum likelihood estimation, the parameters of the mixture 
models are estimated by maximizing the following log likelihood function with 
respect to the parameters. 

∑
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)(loglog           (3.3) 

where )(xf  is the probability model of the mixture, xn  is the observed 

frequency of x  events and z  is the highest value of x  observed. Thus the 

maximum likelihood estimates of the parameters of the gMIPD are obtained by 

solving the following system of non-linear equations in which 1j∆  is given in 

(3.4) for .2,1=j  
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On solving these normal equations using mathematical soft-wares, we can obtain 

estimators of parameters of .2MIPD All these procedures can be extended to any 

value of .2>g  The normal equations for obtaining the estimates of parameters 

of the 3MIPD  and that of mixtures of positive Poisson distributions )(MPPD  in 

case of method of factorial moments, method of mixed moments and method of 
maximum likelihood are obtained and included in Appendix. 
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4. DATA ILLUSTRATION AND CONCLUDING REMARKS 

For numerical illustration, we consider two real life data sets as given in Tables 

1 and 2. The first data set given in Table l indicates the distribution of number of 
articles on theoretical Statistics and Probability for years 1940-49 and initial 

letter N-R of the author's name. For details, see Kendall (1961). The second data 

set given in Table 2 represents the distribution of 633 biologists according to the 
number of research papers to their credit in the review of applied entomology, 

volume 24, 1936. For details, see Williams (1944). In both data sets, there is 

some sort of intervention problems and that may be the reason for the spread of 

probability concentration to higher values of the observations. We have fitted the 

MPPD  and the gMIPD for particular values of g to both datasets by the 

method of factorial moments, method of mixed moments and method of 

maximum likelihood.  

The results obtained are included in Tables 1 and 2. Based on  the computed 

squareChi −  values and −P values in respective cases, it can be observed that 

the 3MIPD
 
gives the best fit compared to the 2MIPD and the MPPD  to both 

datasets.  

For the sake of retaining minimum degrees of freedom, in case of first data-set, 

we assume that 2121 , ρρλλ == and 21 αα =
 
while fitting 3MIPD . For higher 

values of g , it can be possible to obtain better  fits even for  complicated data 

sets with intervention. Similar studies are possible in case of other probability 

models subject to identifiability conditions. Several inferential aspects of 

gMIPD
  
remains for

 
further investigation. 
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Table 1: Comparison of fit of MIPDg  for various methods of estimation for the 

first data set 

count 

Obse

rved 
‘f’ 

Expected 

frequency by 
factorial moments 

Expected frequency 

by mixed moments 

Expected 
frequency by 

maximum 

likelihood 

MPPD    MIPD2    MIPD3 MPPD    MIPD2    MIPD3 MPPD   MIPD2     MIPD3 

1 83 71 73 
7

1 
83 83 83 80 78 80 

2 18 24 22 
2

1 
12 15 16 16 19 20 

3 13 20 16 
1

7 
17 15 14 15 14 14 

4 9 10 10 
1

2 
10 12 13 14 11 10 

5 7 8 10 
1

0 
9 6 6 6 8 7 

6 7 6 6 6 6 6 5 6 6 6 

7 2 2 2 2 2 2 2 2 3 2 

8 5 3 5 5 5 5 5 5 5 5 

Total 144 144 144 144 144 144 144 144 144 144 

Degrees of 

freedom 4 2 1 4 2 1 4 2 1 

Chi-square 

value 5.36 4.20 4.01 4.25 3.96 2.25 2.13 2.04 1.96 

P-value 
0.52 0.63 0.69 0.60 0.51 0.67 0.75 0.78 0.85 
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Table 2: Comparison of fit of MIPDg for various methods of estimation for the 
second data set 

count 
Obse
rved 

‘f’ 

Expected frequency 
by factorial 

moments 

Expected 
frequency by 

mixed moments 

Expected 

frequency by 

maximum 
likelihood 

MPPD   MIPD2   MIPD3 MPPDMIPD2 MIPD3 MPPD MIPD2 MIPD3 

1 365 335 350 360 365 365 365 375 372 359 

2 95 105 107 89 100 105 103 89 88 100 

3 50 65 56 45 45 42 46 43 46 46 

4 36 45 42 42 43 32 30 43 43 40 

5 15 17 11 19 17 19 19 19 18 17 

6 11 9 14 14 9 12 12 9 9 13 

7 12 14 9 13 14 12 12 12 13 14 

8 8 6 6 6 6 6 6 6 6 6 

9 5 6 5 5 6 6 6 6 6 6 

10 36 31 33 40 28 33 34 31 32 32 

Total 633 633 633 633 633 633 633 633 633 633 

d.f. 6 4 1 6 4 1 6 4 1 

Chi-square 

value 
11.5 7.5 4.52 6.03 5 4.05 5.87 4.5 3.26 

P-value 0.24 0.58 0.87 0.74 0.83 0.9 0.75 0.87 0.95 
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Table 3: Estimated vales of parameters of MIPDg for the first data set 

 

 

Es
ti

ma

ted 
val

ue

s 

of 
pa

ra

me
ter

s 

 

Expected frequency by 

factorial moments 

Expected frequency 

by mixed moments 

Expected frequency by 

maximum likelihood 

MPPD MIPD2   MIPD3 MPPD    MIPD2 MIPD3 MPPD   MIPD2 MIPD3 

28.0

ˆ

=

α

 
84.0

ˆ

=

α
 

74.0

ˆ

=

α
 45.0

ˆ

=

α

 

28.0

ˆ

=

α

 
54.0

ˆ

=

α

 

30.0

ˆ

=

α

 

35.0

ˆ

=

α

 
32.0

ˆ

=

α
 

84.0

ˆ

=

λ

 
84.0

ˆ

=

λ
 

26.0

ˆ

=

α
 12.1

ˆ

=

λ

 

92.0

ˆ

=

λ

 

46.0

ˆ

=

α

 
86.0

ˆ

=

λ

 

92.0

ˆ

=

λ

 
68.0

ˆ

=

α
 

36.0

ˆ

=

λ

 
29.0

ˆ

=

λ
 

80.0

ˆ

=

λ
 26.0

ˆ

=

λ

 

35.0

ˆ

=

λ

 

66.0

ˆ

=

λ

 

32.0

ˆ

=

λ

 

44.0

ˆ

=

λ

 
90.0

ˆ

=

λ
 

 39.0

ˆ

=

ρ
 

45.0

ˆ

=

λ
 

 
37.0

ˆ

=

ρ

 
49.0

ˆ

=

λ

 

 32.0

ˆ

=

ρ

 
41.0

ˆ

=

λ
 

 62.0

ˆ

=

ρ
 

62.0

ˆ

=

ρ
 

 
35.0

ˆ

=

ρ

 

54.0

ˆ

=

ρ

 

 35.0

ˆ

=

ρ

 
65.0

ˆ

=

ρ
 

   
  19.0

ˆ

=

ρ

 

  
28.0

ˆ

=

ρ
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Table 4: Estimated vales of parameters of MIPDg for the second data set 
 

 

Est

im

ate
d 

val

ues 

of 
par

am

ete
rs 

 

Expected frequency by 

factorial moments 

Expected frequency by 

mixed moments 

Expected frequency  

maximum likelihood 

MPPD  MIPD2   MIPD3 MPPD MIPD2 MIPD3 MPPD MIPD2   MIPD3 

58.0

ˆ

=

α

 
49.0

ˆ

=

α
 

49.0

ˆ

=

α
 45.0

ˆ

=

α

 

ˆ

0.34

α =
 

35.0

ˆ

=

α

 

65.0

ˆ

=

α

 

54.0

ˆ

=

α

 

32.0

ˆ

=

α

 

84.0

ˆ

=

λ

 
28.0

ˆ

=

λ
 

28.0

ˆ

=

α
 

45.0

ˆ

=

λ

 
15.0

ˆ

=

λ
 

45.0

ˆ

=

λ

 

84.0

ˆ

=

λ

 

32.0

ˆ

=

λ

 

54.0

ˆ

=

λ

 

18.0

ˆ

=

λ

 
34.0

ˆ

=

λ
 

21.0

ˆ

=

λ
 

33.0

ˆ

=

λ

 
48.0

ˆ

=

λ
 

17.0

ˆ

=

λ

 

42.0

ˆ

=

λ

 

61.0

ˆ

=

λ

 

51.0

ˆ

=

λ

 

 62.0

ˆ

=

ρ
 

37.0

ˆ

=

λ

 
 51.0

ˆ

=

ρ
 

27.0

ˆ

=

λ

 

 54.0

ˆ

=

ρ

 

44.0

ˆ

=

λ

 

 52.0

ˆ

=

ρ
 

41.0

ˆ

=

λ
 

 61.0

ˆ

=

ρ
 

55.0

ˆ

=

λ

 

 
84.0

ˆ

=

ρ

 

72.0

ˆ

=

λ

 

  56.0

ˆ

=

ρ
   

55.0

ˆ

=

ρ

 

  
55.0

ˆ

=

ρ

 

  

48.0

ˆ

=

ρ
   

65.0

ˆ

=

ρ

 

  
38.0

ˆ

=

ρ

 

  

48.0

ˆ

=

ρ
   48.0

ˆ

=

ρ

 

  85.0

ˆ

=

ρ
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Appendix 

Here we present the non-linear system of equations for estimating the parameters 

of 3MIPD and MPPD by method of factorial moments, method of mixed 

moments and method of maximum likelihood. 

Method of factorial moments The first six population factorial moments of 

3MIPD are equated to the corresponding sample factorial moments to obtain the 

following system of equations in which [ ]r
τ  denote the −r th sample factorial 

moment, for .7,...,2,1=r  

[ ]jjjj ταααα =Λ−−+Λ+Λ 3212211 )1(
, 

for .7,...,2,1=j
    

(A.1) 

In a similar way, we have the following system of equations in case of MPPD  
in which [ ]k

υ denote the −k th sample factorial moment in which .5,4,3,2,1=k  

[ ]k
kkk

qqq υλααλαλα =−−++ 3321222111 )1(
     

 (A.2) 

Method of mixed moments Let 1O
 
be the observed frequency corresponding to 

the first observed value and N , the observed total frequency. In method of 

moments, the parameters of the 3MIPD are estimated by using the first four 

sample factorial moments and the first observed frequency of the distribution. 

Thus the estimates are obtained by solving the equation (A.1) for 5,4,3,2,1=j  

along with the following equation. 

N

O

eeeeee

12
21

2
2

1
1

3332212111 )1(
)1(

)1()1(
=

−
−−+

−
+

− ρλλρλλρλλ

λ
αα

λ
α

λ
α . (A.3) 

In the case of MPPD , the estimates are obtained by solving the equations (A.2) 

for 4,3,2,1=k  along with the following equation  

N

O

eeee

12
21

2
2

1
1

33321 )1(
)1(

)1()1(
=

−
−−+

−
+

− ρλλλλ

λ
αα

λ
α

λ
α .      (A.4) 

Method of maximum likelihood Let 111 ),(),( mxAxq  be the probability of the 

3MIPD
 
mixture model, observed frequency of x  observed and the largest value 

of x  observed. The maximum likelihood estimators of the 3MIPD
 
can be 

obtained from the following system of normal equations in which 1j∆
 
for 

   
3,2,1=j . 
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1 1

1 1 1
3

1 11 1

( ) ( ) ( )
( )

( ) ( )

m m

x x

A x f x A x
f x

q x q x= =

=∑ ∑
             (A.5)

 

1 1

1 2 1
3

1 11 1

( ) ( ) ( )
( )

( ) ( )

m m

x x

A x f x A x
f x

q x q x= =

=∑ ∑
               (A.6) 

1 1

1 1 1 1 1
1 11

1 11 1

( ) ( ) ( ) ( )
( 1)

( ) ( )

m m

x x

xA x f x A x f x
e

q x q x

λ λ
= =

− = ∆∑ ∑
        (A.7) 

1 1

2 1 2 1 2
2 21

1 11 1

( ) ( ) ( ) ( )
( 1)

( ) ( )

m m

x x

xA x f x A x f x
e

q x q x

λ λ
= =

− = ∆∑ ∑
        (A.8) 

1 1

2 1 3 1 3
3 31

1 11 1

( ) ( ) ( ) ( )
( 1)

( ) ( )

m m

x x

xA x f x A x f x
e

q x q x

λ λ
= =

− = ∆∑ ∑
              (A.9) 

1 1

1 1
1 1

1 11 1

( ) ( )
( 1) ( )

( ) ( )

m m

x x

A x A x
f x f x

q x q x= =

− =∑ ∑       

 (A.10) 

1 1

1 1
2 2

1 11 1

( ) ( )
( 1) ( )

( ) ( )

m m

x x

A x A x
f x f x

q x q x= =

− =∑ ∑         

 (A.11)

 

1 1

1 1
3 3

1 11 1

( ) ( )
( 1) ( )

( ) ( )

m m

x x

A x A x
f x f x

q x q x= =

− =∑ ∑        (A.12) 

In a similar way, we have the following system of equations in case of MPPD .  

Let 222 ),(),( mxAxq  be the probability of the MPPD mixture model, 

observed frequency of x  observed and the largest value of x observed. 

 ∑∑
== −

=
−

2

1

2

1
1

1

1

1

)1(!)1(!

m

x

xm

x

x

exex
λλ

λλ

     

 (A.13) 

∑∑
==

−

=
−

−
2

1
2

1

1

1

2

2

1

1
1

2

2

!)(

)(

)!1()(

)(
)1(

m

x

xm

x

x

xxq

xA
e

xxq

xA
e

λλ λλ                   (A.14)           

∑∑
==

−

=
−

−
2

2
2

2

1

2

2

2

1

1
2

2

2

!)(

)(

)!1()(

)(
)1(

m

x

xm

x

x

xxq

xA
e

xxq

xA
e

λλ λλ             (A.15) 
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On solving the normal equations )5.(A to )12.(A  and )13.(A  to )15.(A , we 

can obtain the estimators of the parameters of  3MIPD
 

and MPPD  

respectively. 
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