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ABSTRACT 

In this paper, we derive some recurrence relations satisfied by single and 

product moments of lower generalized order statistics arising from inverse 
th

p  order exponential distribution. Further, we have obtained a 

characterization of inverse thp  order exponential distribution based on the 

recurrence relation for single moments of lower generalized order 

statistics. 

 6 

1. INTRODUCTION 7 

The concept of generalized order statistics )(gos  was introduced by Kamps 8 

(1995). It provides a general frame work for models of ordered random 9 
variables. Several known results in submodels can be subsumed, generalized and 10 
integrated within n general frame work. For an extensive study in this area one 11 
may refer to the works of Kamps and Gather (1997), Keseling (1999), Cramer 12 
and Kamps (2000), Kamps and Cramer (2001) and Pawlas and Szynal (2001a).  13 

Let ),,,(),.....,,,,2(),,,,1( kmnnXkmnXkmnX , be n  gos  arising from an 14 

absolutely continuous distribution function )(xF  and probability density 15 

function )(xf , ( 1>n , m and k  are real numbers and 0>k ). Then the joint 16 

pdf of ),,,(),.....,,,,2(),,,,1( kmnnXkmnXkmnX  is given by (Kamps, 1995). 17 
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on the cone )1(...)0(
1

21
1 −+− <≤≤≤< FxxxF n  of nℜ , 1 

where )(1)( xFxF −= and ).1)(( +−+= mjnkjγ        2 

By appropriate choice of the parameters we can deduce the forms of (1.1) for 3 

ordinary order statistics, thk  record values, sequential order statistics and 4 
progressive IItype  censored order statistics.  5 

For 1,0..... 11 ==== − kmm n  and ,,1..... 11 Nkmm n ∈−=== −  (1.1) reduces 6 

to that of ordinary order statistics and thk  record values respectively. However, 7 
when F  is an inverse distribution function the concept of gos  is inapplicable. 8 

Hence in such situations the concept of lower (dual) generalized order statistics 9 
becomes essential. 10 

The concept of lower generalized order statistics )(lg os  was introduced by 11 

Pawlas and Szynal (2001b). Let 1
121 ),...,,(~,1,

−
− ℜ∈=≥∈ n

nmmmmkNn be 12 

the parameters such that 0)( >+−+= rr Mrnkγ  13 

where 14 

∑
−

=

=
1n

rj
jr mM  for all ,r 11 −≤≤ nr .  15 

Then nrkmnrX ,...,2,1),,~,,( =′ are called lower gos if their joint pdf is given 16 

by  17 
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(1.2) 19 

for  )0(...)1(
1

21
1 −− >≥≥≥> FxxxF n of nℜ . 20 

Here we may consider two cases. 21 

(i) mmmm n ==== −121 .....   22 

(ii) 1,...,2,1,,, −=≠≠ njijiji γγ  23 

For case (i), the pdf  of thr  lower gos  based on a random sample from an 24 

absolutely continuous distribution function F  is of the form 25 
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and the joint pdf  of thr  and ths  lower gos , nsr ≤<≤1  is given by  1 
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For case (ii), the pdf  of thr  lower gos  is given by 8 
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and the joint pdf  of thr  and ths  lower gos , nsr ≤<≤1  is given by 10 
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where, 14 
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For a detailed account on lower gos  one may refer to Burkschat et al. (2003), 18 

Ahsanullah (2004) and Khan et al. (2008). Nain (2010) has obtained recurrence 19 
relations for the single and product moments of ordinary order statistics arising 20 
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from th
p  order exponential distribution. In our present work we introduce 1 

inverse th
p  order exponential distribution and discuss some distributional 2 

properties of this distribution using lgos. In section 2, we derive recurrence 3 
relations for single and product moments of lower gos  arising from inverse 4 

thp order exponential distribution In section 3, we obtain a characterization 5 

result based on the recurrence relation for the considered family of distributions. 6 

2. RECURRENCE RELATIONS FOR SINGLE AND PRODUCT 7 
MOMENTS OF LOWER GENERALIZED ORDER STATISTICS 8 

A random variable X  is said to have inverse thp  order exponential distribution 9 

if its probability density function is of the form 10 
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(2.1)       12 

0,0 >> xa p  and p is some positive integer. 13 

The cdf  corresponding to (2.1) is given by 14 
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(2.2) 16 

It can be seen that 17 
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It should be noted that if Y  follows a thp  order exponential distribution, then 19 

YX /1=  follows the inverse 
th

p  order exponential distribution defined by the 20 

pdf  (2.1). Thus (2.1) is a generalized class of models which includes  inverse 21 

exponential, inverse Rayleigh, inverse Weibull distributions and so on. Hence 22 
any result generated to this generalized class of distribution provides a unified 23 
like results which are being enjoyed by a very large class of distributions.   24 

Now, we derive recurrence relations for single and product moments of lgos 25 

arising from inverse thp  order exponential distribution with pdf  (2.1). The 26 
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single moment ....,2,1)],,,,([
)(

,,,
=′= jkmnrXE

jj
kmnr

µ of lower gos  arising 1 

from an arbitrary continuous distribution with distribution function )(xF  and 2 

pdf )(xf is given by 3 
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and the product moment 5 

....,2,1)],,,,(),,,([
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Case (i):  mmmm n ==== −121 .....   8 

For case (i), we have the following theorem for single moments. 9 

Theorem 2.1: Suppose X follows inverse thp
 
order exponential distribution 10 

with pdf  (2.1), then  11 
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for ,...2,1=j  and 2≥r . 13 

Proof :  From  (2.4) and (2.3) we have,  14 
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Now integrating by parts the right hand side of the above equation, treating 16 
2−−ijx  for integration and the rest of the integrand for differentiation we get 17 
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On further simplification of (2.7) we get relation (2.6). 19 
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Remark 2.1: On putting 1−=m , 1≥k , in (2.6) we obtain the recurrence 1 

relation for single moments of the −k lower record values from inverse th
p  2 

order exponential distribution as follows: 3 
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On putting 1=k  in (2.8), we get the result for the usual lower record values. 5 

Remark 2.2: On putting 0=m , 1=k  in (2.6) we obtain the recurrence relation 6 

for single moments of order statistics from inverse thp  order exponential 7 

distribution as follows: 8 
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Remark 2.3: By putting 0=ia , 2≥i  in (2.6) the result for inverse linear 10 

exponential distribution can be deduced. 11 

We now establish the following theorem on the recurrence relation for the 12 
product moments of lower gos . 13 

Theorem 2.2: Suppose X follows inverse th
p  order exponential distribution 14 

with pdf  (2.1). Then for nsr ≤<≤1 ,  15 
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for ,...2,1,0, =lj . Also we have,  17 
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Proof:  From (2.5), for nsr ≤<≤1  we obtain 19 
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Using (2.3) in (2.13) we get 1 
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Integrating (2.14) by parts, treating 21 −−i
y  for integration and the rest of the 3 

integrand for differentiation, we get for 1+> rs , 4 
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Substituting (2.15) in (2.12) we get  7 
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which on further simplification leads to (2.10). 10 

Further, for 1+= rs , we have 11 
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Substituting (2.17) in (2.12) and on further simplification we get (2.11). 14 

Remark 2.4: Theorem 2.2 reduces to the result of single moments established in 15 
theorem 2.1 at   0=j . 16 

Remark 2.5: On putting 1,1 ≥−= km , in (2.10) and (2.11) we obtain the 17 

recurrence relation for product moments of the k-lower record values arising 18 

from inverse th
p  order exponential distribution. 19 
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For 1=k , we get the relation for product moments of classical lower record 1 

values arising from inverse th
p  order exponential distribution. 2 

Remark 2.6: Putting 1,0 == km , in (2.10), the recurrence relation for product 3 

moments of order statistics from inverse th
p order exponential distribution is 4 

obtained as follows: 5 
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Remark 2.7: By putting 2,0 ≥= iai  in (2.10) and (2.11) we get the recurrence 8 

relation for product moments of lower gos  from inverse linear exponential 9 

distribution. 10 

Case (ii): 1,...,2,1,,, −=≠≠ njijiji γγ . 11 

Now we establish the following theorems based on recurrence relations for 12 

single and product moments arising from inverse thp  order exponential 13 

distribution. 14 

Theorem 2.3: For the distribution (2.2) and for ,...2,1,2 =≥ jr   15 
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Proof: From (1.5) and (2.3) we have  17 

 ,)()(

01
1

)(
,~,, ∑∑

==
−=

p

i

i

r

u

ur
j

kmnr
xIaraCµ            (2.20) 18 

where, 19 

.)]([)(

0

2
dxxFxxI uij

∫
∞

−−=
γ

                                         (2.21) 20 

Integrating (2.21) by parts, treating 2−−ij
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Now, substituting )(xI in (2.20) we get the result. 1 

Remark 2.8: Theorem 2.1 can be deduced from theorem 2.3 by replacing 2 
m~ with 1, −≠mm . 3 

Theorem 2.4: For the inverse thp  order exponential distribution in (2.2) and for 4 

nsr ≤<≤1 ,       ,...2,1=k     5 

{ }.)(
)1(

0

)1,(
,~,,,

)1(
,~,,

),(
,~,,, ∑

=

−−−−+
−

−−
=

p

i

ilj
kmnsru

ilj
kmnr

ilj
kmnsr il

a
µγµµ        6 

(2.22) 7 
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where,  12 
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Integrating (2.24) by parts, treating 21 −−iy
 for integration and the rest of the 16 

integrand for differentiation we get, 17 
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Substituting (2.25) in (2.23) and on further simplification we get the relation 20 
(2.22). 21 

Remark 2.9: By replacing m~  with m , we can deduce theorem 2.2 from 22 
theorem 2.4.        23 
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3. CHARACTERIZATION OF DISTRIBUTION USING 1 
PROPERTIES OF LOWER GENERALIZED ORDER 2 

STATISTICS 3 

Now we consider the problem of characterization of inverse thp  order 4 

exponential distribution using the relation in theorem 2.1. For this we require the 5 
following result of Hwang and Lin (1984). 6 
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is satisfied if and only if X  follows inverse thp  order exponential distribution 16 

with pdf  (2.1). 17 

Proof: The necessary part follows immediately from theorem 2.1. 18 
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(3.2)                                                                           24 

Now, integrating by parts the second term on the RHS of (3.2) we get 25 
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Then from proposition 3.1 it follows that 3 
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and consequently it follows from (2.3) that f(x) has the form (2.1). 5 

Remark 3.1: For 1,1 ≥−= km  the following recurrence relation for single 6 

moments of the −k th lower record values  7 
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becomes a characterization property of inverse th
p  order exponential 9 

distribution. 10 
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