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ABSTRACT 

In this paper, new block designs for comparing test treatments with a control 

for k (block size) v≤  (number of treatments) have been proposed by using 

the method of cyclic shifts. The construction method helps in assessing 

important properties of the designs without constructing the actual blocks of 

the designs. These newly proposed designs possess the property of A-

optimality for some specific values of b (number of blocks), v and the block 

size )( vk ≤ .  

 

1. INTRODUCTION 

In problems such as screening experiments or in the beginning of a long-term 

experimental investigation, it is desirable to determine the relative performance 

of new test treatments with respect to the control or standard treatment 

(Hedayat, Jacroux and Majumdar, 1988). Experiments to compare certain test 

treatments with a control treatment were first considered by Hoblyn, Pearce and 

Freeman (1954). Cox (1958) suggested augmenting an incomplete block design 

in test treatments with one or more replications of the control in each block to 

obtain a good design. Pearce (1960) developed a systematic approach for 

designing such type of comparative experiments and Pearce (1983) made two 

suggestions for such experiments; one is supplementation and the other is 

reinforcement (following Das, 1958). Pesek (1974) compared a balanced 

incomplete block design )(BIBD  with an augmented BIBD  suggested by Cox 

(1958) for estimating control-test treatment contrasts and noticed that the latter 

design was more efficient.  

Bechhofer and Tamhane (1981) developed the theory of incomplete block 

designs for comparing several treatments with a control. They did not consider 

the −A  or −MV optimality of a design but obtained optimal simultaneous 

confidence intervals. Their developments led to the concept of balanced 

treatment incomplete block )(BTIB  designs; Notz and Tamhane (1983) studied 

their construction. Constantine (1983) showed that a BIBD  in test treatments 

augmented by a replication of control in each block is −A optimal in the class of 

designs with exactly one replication of the control in each block. Jacroux (1984) 
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showed that Constantine’s (1983) conclusion remains valid even when 

the BIBDs  are replaced by some divisible designs.  

2. NOTATIONS AND THE FORMULATION OF THE PROBLEM 

Majumdar and Notz (1983) gave a method of obtaining −A  and −MV optimal 

designs among all designs for block designs. Hedayat and Majumdar (1984) 

gave an algorithm and a catalogue of −A  and −MV optimal designs. Ture 

(1982, 1985) also studied −A optimal designs and suggested their construction. 

He constructed −A  optimal designs when the control treatment replication size, 

0r , is a multiple of b for fixed v and k. Hedayat and Majumdar (1985) gave 

families of −A  and −MV optimal designs. Notz (1985) proposed optimal row-

columns designs for comparing test treatments with a control. Majumdar (1986) 

and Hedayat, Jacroux and Majumdar (1988) considered the problem of finding 

optimal designs for comparing the test treatments with two or more controls 

Jacroux (1987a, 1987b, 1988) gave new methods for obtaining −MV optimal 

design, and also gave catalogues for such designs. Jacroux (1986) also studied 

optimal two-column designs for comparing treatments with a control by utilizing 

techniques of Hall (1935) and Agrawal (1966). Hedayat and Majumdar (1988) 

studied designs simultaneously optimal under the set up of both block designs 

and row-column designs. Jacroux (1989) generalized the Hedayat and 
Majumdar’s (1984) algorithm for finding −A optimal designs. Cheng, 

Majumdar, Stufken and Ture (1988) introduced new families of A- and MV-

optimal block designs. Stufken (1986, 1987, 1988) also studied −A  and 

−MV optimal block designs. Mandal, Shah and Sinha (2000) considered 

distance optimality criterion introduced by Sinha (1970) for comparing a test 
treatment with control treatments. The matter of comparing test treatments with 

two or more controls has been discussed in detail by Majumdar (1986) and 

Hedayat, Jacroux and Majumdar (1988) and Majumdar (1996). Jacroux (2000, 

2001, 2002) also constructed −A optimal designs for comparing a set of test 

treatments to a set of standard (control) treatments.  

Suppose in an experiment we are interested in comparing test treatments 

v...,,2,1  with a control treatment denoted by '0' . For example we have a BTIB  

design with  4=v  treatments in 6=b  blocks each of size 3=k .  

0 0 0 0 0 0 

1 1 1 2 2 3 

2 3 4 3 4 4 

Here test treatments )4,3,2,1(  are replicated 31 =r  times and are compared with 

a control treatment '0' , which is replicated 60 =r  times. Each treatment pair 

excluding the control treatment '0'  appears together within blocks 11 =λ  time 

and the control treatment '0'  appears with each test treatment within blocks 

30 =λ  times. 
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Our objective in this paper is the construction of new designs for comparing test 

treatments with a control when such BTIB  designs do not exist for some 

specific values of bv, and k . The organization of the paper is as follows. The 

BTIB  designs are briefly described in Section 3. The method of cyclic shift is 

described in detail in Section 4, and the construction of BTIB  designs using 
cyclic shifts is explained in Section 5. The newly proposed designs and their 

comparison is made in Section 6. The concluding remarks appear in Section 7. 

3. THE BALANCE TEST-TREATMENTS INCOMPLETE BLOCK 

(BTIB) DESIGNS 

Suppose v  test treatments and a control is to be compared in b  blocks of size k  

each. The test treatments will be labeled as v...,,2,1  and the control as '0' . Then 

the model for the response ijqY  obtained by applying −i th treatment to the 

−q th unit in −j th block is  

ijqjiijqY εβτµ +++=  , vi .,..,2,1,0= ; bj .,..,2,1= ; 

       ijnq .,..,2,1= )...,2,1,0( =ijn ,  

where ijn denotes the number of experimental units in block j  assigned to 

treatment i . There is no observation ijqY  if 0=ijn . The unknown constants µ , 

iτ  and jβ  represent the general mean, the effect of treatment i, the effect of 

block j  and ijqε ’s are uncorrelated random variables having mean zero and 

variance 2σ . 

Let ),,( kbvD be the set of all possible designs and let ( )ˆˆ0 iττ − ; vi .,..,2,1=  be 

the best linear unbiased estimator of )( 0 iττ − . Our objective here is to allocate 

the treatments v.,..,2,1,0  to the blocks in a way that allows the best possible 

inference on the vector of control-test treatment contrasts ,,( 2010 ττττ −− ...,  

)0 vττ −  using the criteria of −A optimality. A design is called −A optimal if it 

minimizes  

∑
=

−
v

i

i

1

0 )ˆˆ(var ττ  

Bechhofer and Tamhane (1981) defined a class of designs, known as BTIB  

designs and discussed some optimal properties of these designs for setting 

simultaneous confidence bounds for the set of control-test treatment contrasts. A 

BTIB  design is an incomplete block design in which each test treatment appears 

in the same block with the control the same number of times )( 0λ=  and any 
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pair of test treatment appears together in the same block the same number of 

times )( 1λ= ). Formally, we may define a BTIB  design by the relation 

∑
=

=
b

j
ijoj nn

1
0λ  for vi .,..,2,1=  

and ∑
=

=
b

j
jiij nn

1
1* λ  for  *

ii ≠ ; i , vi .,..,2,1
* = . 

Note that a BTIB  is a BTIB  design with 1,0=ijn  and 10 λλ = . 

Cheng, Majumdar, Stufken and Ture (1988), Hedayat and Majumdar (1984), 

and Hedayat, Jacroux and Majumdar (1988) defined two types of BTIB  designs, 

rectangular )( −R  type and step )( −S  type. Let BTIB  ),,,,( stkbv denote a 

BTIB  having sbt +  replicates of the control. It is called −R  type design when 

0=s  and a −S  type design otherwise, where s is the number of replicates of 

the control treatment in addition to the obligatory bt replicates of the control 

treatment. Here each block has t  replicates of the control. The layouts of these 

BTIB  designs are pictured in Figure 1 and Figure 2, with columns as blocks. 

 

 

 

     

 Figure 1. R-type BTIB design  Figure 2. S-type BTIB design  

4. THE METHOD OF CYCLIC SHIFTS 

The method of cyclic shifts is a particular way of constructing test treatments 

versus control block designs. Here the v  treatments are labeled as 1.,..,2,1,0 −v  

and we consider the equi-replicate binary design for v  treatments in vb =  

blocks of size k . The method of construction is to allocate to the first plot in the 
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−i th block the treatment i ; 1.,..,2,1,0 −= vi . We denote this using the vector 

T
1 ]1...,,2,1,0[ −= vu , which holds the treatments allocated to the first plot in 

each of the blocks v.,..,2,1 respectively. To obtain the treatment allocation of the 

remaining plots in each block, we cyclically shift the treatments allocated to the 

first plot. In order to define a cyclic shift, let iu  denote the v×1  vector, which 

defines the allocation of treatments to the −i th plot in each block. That is, the 

−j th element of iu  is the treatment allocated to plot i  of block j . A cyclic 

shift of size iq , when applied to plot i , is such that T
1 ][ 1quu iii +=+ , where 

addition is mod v , 1  is a v×1  vector of ones, 1k1 −≤≤ i  and 1v1 −≤≤ iq .  

Assuming that we always start with 1u  as defined above, a design is 

completely defined by a set of 1−k  shifts, Q , say, where ]...,,,[ 121 −= kqqqQ . 

To avoid a treatment occurring more than once in a block, one must ensure that 

sum of any two successive shifts, the sum of any three successive shifts, … , the 

sum of any 1−k  successive shifts is not equal to zero mod v . Subject to this 

constraint, Q  may consist of any combination of shifts including repeats. Also 

the shifts need only range from 1to ]2/[v  inclusive, where ]2/[v  is the greatest 

integer less than or equal to 2/v . This is because a shift of size q  is equivalent 

to one of size ][ qv −  mod v . 

Let us consider the construction of a design for 6=v  and 4=k  to illustrate the 

above method of construction. The set of shifts are defined by ],,[ 321 qqqQ = , 

where ]5,4,3,2,1[qi ∈ .3,2,1; =i  Suppose that ]5,2,1[=Q , then 

T
1 ]5,4,3,2,1,0[=u , T

2 ]0,5,4,3,2,1[=u , T
3 ]2,1,0,5,4,3[=u  and 

T
4 ]1,0,5,4,3,2[=u . Then the complete design will be  

0 1 2 3 4 5 

1 2 3 4 5 0 

3 4 5 0 1 2 

2 3 4 5 0 1 

The properties of a design depend on the number of concurrences between the 

pairs of treatments. A concurrence between two treatments occurs when both 

treatments are in the same block. Because of the cyclic nature of the 
construction, the number of concurrences between any treatment and the 
remainder can be obtained from the number of concurrences between treatment 

0  and the remainder. Also the number of concurrences between 0  and the 

remainder can easily be obtained from Q  (the set of shifts used to construct the 

design). If shifts 1q  and 2q , for example, are applied successively to treatment 

0 , the result is a concurrence between treatment 0  and treatment 1q  and 2q , 

and a concurrence between treatment 0  and treatment 2qq1 + . If a third shift, 
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3q  say, is applied after 1q  and 2q , then the following treatments will also 

concur with treatment 0 : 3q , 3qq2 +  and 32 qqq1 ++ . This adding of shifts to 

get the treatments, which concur with 0 works for the general case and so 

enables the number of concurrences of a design to be obtained directly from the 

shifts, which defines it. In general, if shifts 121 ...,,, −iqqq  have been applied 

successively to treatment 0 , then the additional concurrences, which results 

when shift iq  is applied are between treatment 0 and treatments 

iiiii qqqqqqqqq +++++++ − ......,,.....,,, 21321  when addition is mod v . It 

can also be noted that any shift of size q  that results in concurrence between 

treatment 0  and treatments q  also results in a concurrence between treatment 0  

and treatment )( qv −  mod v . 

In the above design, 1=1q , 2=2q  and 5=3q  were used. For this one obtains 

32 =+ qq1 , 173 ==+ qq2 (mod 6 ) and 283 ==++ qqq 21 (mod 6 ). In the 

above design 1 appears twice (i.e. 1=1q  and 13 =+ qq2 ) and since 1 is 

symmetric to 5  and 5  appears once (i.e. 5=3q ), therefore the concurrence 

between treatment 0  and treatment 1 is 3  and between treatment 0  and 

treatment 5  is also 3 . Similarly 2  appears twice (i.e. 2=2q  and 

23 =++ qqq 21 ) and since 2  is symmetric to 4 , therefore, the concurrence 

between treatment 0  and treatment 2  is 2  and also between treatment 0  and 

treatment 4  is 2 . And 3  appears once (i.e.). 3=+ 21 qq  Since 3  is symmetric 

to itself, therefore the concurrence between treatment 0  and treatment 3  is 2 . 

Therefore, the concurrences between treatment 0  and treatments 5,4,3,2,1  are 

3,2,2,2,3  respectively. The concurrences between treatment 1 and treatments 

5,4,3,2 2 follow the same pattern. i.e. the concurrences are 2,2,2,3 . Similarly the 

concurrences between treatment 2  and treatments 5,4,3  are 2,2,3  and so on. 

By using certain combinations of shifts we can construct designs that are made 

up of complete replicates of smaller designs. When v  and k  are not relatively 

prime, then partial sets of dv /  blocks can also be obtained, where ''d  is any 

common divisor of v  and k .  The shifts producing such partial sets of blocks 

can be obtained as follows. The smallest integer ''a  is found where )( va ×  

nk =/1  and ''n  is an integer. Then the set of shifts used to construct the design 

is such that the sum of every ''a  successive shifts is equal to n . The design will 

contain nv /  blocks. Designs which are constructed using such shifts are 

referred to as fractional designs. For even v  and k , the fractional designs can 

be constructed by setting the middle shift ( 2kq ) equal to 2/v  and ensuring that 

shifts 1q  and )1(...,,2,1;
2

−=−
k

ik iq are complement of each other. For example, 

a fractional design for 6=v  and 4=k  by using the set of cyclic shifts 

)2/1](4,3,2[  is given by 
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0 1 2 3 4 5 

2 3 4 5 0 1 

5 0 1 2 3 4 

3 4 5 0 1 2 

In order to construct a design with more than v  blocks, we combine the blocks 

obtained from more than one sets of shifts. As an illustration, given below is a 

design for 6=v  treatments in 15 blocks of size 4  which has been constructed 

by combining together the blocks which are obtained from the three sets of 

shifts ]2,1,1[ , ]3,1,1[  and )2/1](4,3,2[ . 

  

The above design has been constructed by using shifts 

)2/1](4,3,2[]3,1,1[]2,1,1[ ++ , where the ""+  signs indicate that the blocks 

constructed from the separate sets of shifts must be combined together.  

5. CONSTRUCTION OF TEST-CONTROL TREATMENT BLOCK 

DESIGNS 

Method 1. If 1D is a BITB  design that contains the control treatment t  times in 

each block .)..,2,1( =t , then the design 2D  in the test treatments obtained by 

deleting the control from each block of 1D  satisfies the definition of a BIB  

design. Thus one easy way of constructing a BITB  design is to start with a BIB  

design 2D  in the test treatments and to augment each block of 2D  with the 

control t  times for some value of ...,2,1=t . BTIB  designs that are constructed 

using this augmentation process are called augmented BIB  designs ( )'( sBIBD  

as defined by Majumdar and Notz (1983). 

In our method, we first construct a design in which each treatment pair appears 

together within blocks an equal number of times. The block sizes may or may 

not be equal. If the block sizes are equal, we have an −R type design, and then 

each block of the design can be augmented by t  replicates of the control 

treatments, where 1≥t . If the block sizes are not equal, then the design is an 

−S type. In this case, each block is augmented by a possibly different value of 

0≥t , so that the blocks of the augmented design also become equal sized. As 

we have our own catalogues of BIB  designs and methods of constructing such 

designs, we therefore have a large number of designs for different values of kv,  

0 1 2 3 4 5  0 1 2 3 4 5  0 1 2 

1 2 3 4 5 0  1 2 3 4 5 0  5 0 1 

2 3 4 5 0 1  2 3 4 5 0 1  5 0 1 

4 5 0 1 2 3  5 0 1 2 3 4  3 4 5 
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and b  to choose from. Therefore, we can construct designs for many different 

values of 0r  and 1r . 

Example 1. Let 8=v , 1=t , 40=b , 3=k , 320 =r and , 11 =r . The set of shifts 

used to construct the required design are ,]4321[]12[ C++++  where ]12[  

means the set of shifts ]4321[],12[ +++  means the sets of shifts 

]4[]3[]2[]1[ +++  and C  means to augment each block of this part of the design 

with a control treatment once. The complete design is given below: 

Design 1 

1 2 3 4 5 6 7 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 3 4 5 6 7 8 1  1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8  1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 

4 5 6 7 8 1 2 3  2 3 4 5 6 7 8 1 3 4 5 6 7 8 1 2  4 5 6 7 8 1 2 3 5 6 7 8 1 2 3 4 

Example 2. Let 8=v , 4=k , 12=b , 160 =r and 41 =r . The set of shifts used to 

construct the required design are C]12[  and C2)]2/1(4[ . The C  is defined in 

the above example and C2  means augment each block of this part of design 

with the control treatment two times, i.e. each block of this part of the design 

contains two replicates of the control treatment. 

Design 2 

 

 

 

 

Method 2. Bechhofer and Tamhane (1981) defined another method of design 

construction, which is as follows. Starting with a BIB  design containing vt >  

treatments in b  blocks, one can replace the treatments tvv ,...,2,1 ++  by zero 

to obtain a new BTIB  design with possibly an additional block or blocks, each 

one of the latter containing only one test treatment or only the control treatment. 

After deleting all of these one-treatment blocks and identifying the support of 

the resulting BTIB  design, we obtain the derived generator design (s). A 

generator design is defined by Bechhofer and Tamhane (1981) as BTIB  design, 

which is such that no proper subset of its blocks forms a BTIB  design, and no 

block of which contains only one of the ( 1+v ) treatments. Bechhofer and 

Tamhane (1981) pointed out in their design (3.7a) by their method II; that every 

BIBD  involving t  treatment yields a BTIB  design with 1−= tv  test 

treatments. 

In our second method of construction, we construct a design for ( 1+v ) test 

treatments. If the design is a BIB , then each treatment appears together an equal 

0 0 0 0 0 0 0 0 0 0 0 0 

1 2 3 4 5 6 7 8 0 0 0 0 

4 5 6 7 8 1 2 3 5 6 7 8 
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number of times, and if we consider the ‘zero’ treatment as the control, then we 

have a BTIB  design for v  test treatments and one control. In this case 101 rr = , 

(where 01r  is number of replicates of the control treatment before 

augmentation). Here we can also augment each block by a control treatment t  

times. Then we have btrr += 010 . In this case we can also take designs with 

different values of k , and then augment the blocks with a control treatment to 

make all the blocks of equal size. We have also obtained a BTIB  design by 

combining method 1 and method 2 (see example 4). 

Example 3. Let 8=v , 5=k , 18=b , 260 =r and 81 =r . The set of shifts used 

to construct the required design are:  Ct )}1](132112{[ ++ . 

In this case we have constructed the design by using the sets of shifts ]2,1,1[  and 

]2,3,1[  for 1+v , i.e. 9 treatments (denoted in the sets of shifts by adding 1+t  at 

the end) and then augmented the full design by the control treatment. The final 

design is given below.  

Design 3 

 

Example 4. Let 8=v , 4=k , 30=b , 240 =r  and , 121 =r . The set of shifts used 

to construct the required design are: CCt 2)]2/1(4[]12[)1](132112[ ++++ . 

Design 4 

0  1  2  3  4  5  6  7  8 0  1  2  3  4  5  6  7  8 0  0  0  0  0  0  0  0 0  0  0  0 

1  2  3  4  5  6  7  8  0 1  2  3  4  5  6  7  8  0 1  2  3  4  5  6  7  8 0  0  0  0 

2  3  4  5  6  7  8  0  1 4  5  6  7  8  0  1  2  3 2  3  4  5  6  7  8  1 1  2  3  4 

4  5  6  7  8  0  1  2  3 6  7  8  0  1  2  3  4  5 4  5  6  7  8  1  2  3  5  6  7  8 

6. SUGGESTED DESIGNS AND COMPARISONS 

Since −A optimal design exists for each set of values of v , b  and k , we can 

find that for fixed value of 0r , which is a multiple of b  as given by Ture (1985) 

and also for 
1

r , so that the design is −A optimal. But the question arises, what 

we should do if we do not have the required value of 0r ; and if we have, we do 

not have the required number of replications? Then the obvious choice will be to 

0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 

0 1 2 3 4 5 6 7 8  0 1 2 3 4 5 6 7 8 

1 2 3 4 5 6 7 8 0  1 2 3 4 5 6 7 8 0 

2 3 4 5 6 7 8 0 1  4 5 6 7 8 0 1 2 3 

4 5 6 7 8 0 1 2 3  6 7 8 0 1 2 3 4 5 
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use another design with different value of 0r . Therefore, for particular sets of 

),,( kbv , we give all possible designs for different values of 0r and 1r . In all 

cases, the −A optimal design is in this class. If we compare our designs with the 

designs given in Appendix A , we will find that we have developed many new 

designs. For example, we give the designs for 4=v , 3=k  and 14=b . There is 

no such design available for the value of v , k  and 14=b  given in their 

designs. However, we have proposed new designs for different values of 0r  and 

1r  (see example 5 to example 7). 

Example 5. Let 4=v , 3=k , 14=b , 60 =r , 91 =r , 30 =λ , 51 =λ and set of 

shifts C)]2/1(21[)]2(11[ ++ . 

Design 8 

 

 

 

 

Example 6. Let 4=v , 3=k , 14=b , 100 =r , 81 =r , 40 =λ , 41 =λ  and set of 

shifts Ctt )}1](2{[)1](11[]11[ ++++ . 

Design 9 

 

 

 

 

Example 7. Let 4=v , 3=k , 14=b , 140 =r , 71 =r , 50 =λ , 31 =λ  and set 

of shifts  Ct )}1](21{[]11[ +++ .  

Design 10 

 

 

 
 

We have developed our designs using proposed methods (defined in Section 4) 

based on shifts. In this paper, we have also proposed a class of new designs for 

different values of ),,( bkv . The class of these new designs is available for the 

following sets of v , k , different values of b , 0r  and 
1

r .   

1 2 3 4 1 2 3 4 0 0 0 0 0 0 

2 3 4 1 2 3 4 1 1 2 3 4 1 2 

3 4 1 2 3 4 1 2 2 3 4 1 3 4 

1 2 3 4 0 1 2 3 4 0 0 0 0 0 

2 3 4 1 1 2 3 4 0 0 1 2 3 4 

3 4 1 2 2 3 4 0 1 2 3 4 0 1 

1 2 3 4 0 0 0 0 0 0 0 0 0 0 

2 3 4 1 0 1 2 3 4 0 1 2 3 4 

3 4 1 2 1 2 3 4 0 2 3 4 0 1 
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v 3 4 5 6 7 8 9 10 

k 3 3, 4 3, 4, 5 3, 4, 5,6 3, 4, 5, 6, 7 3, 4, 5, 6, 7 3, 4, 5, 6, 7 3, 4, 5, 6, 7 

 

v 11 12 13 14 15 

k 3, 4, 5, 6,7, 8, 9 3, 4, 5,6 3, 4, 5, 6, 7 4, 5, 6 3, 4, 5, 6, 7, 8 

But we will give only one specific case with 8=v  and 4=k  presented in Table  

• Table 1: Suggested designs for one representative case 8=v  and 4=k . 

b t  s

 
0

r  
1

r  Sets of Shifts 

12 1 4 14 4 CC 2)]2/1(4[]12[ +  

16 0 16 16 6 C2]1[]122[ +  

18 0 32 32 5 C2]31[)]4/1(222[ ++  

20 0 24 24 7 CC 2]2[]12[)]2/1(131[ ++  

21 0 28 28 7 CtCtt 2)}1](4{[)}1)](3/1(33{[)1](112[ +++++  

22 0 16 16 9 C)]2(12[)]4/1(222)2/1](131[ ++  

24 1 8 32 8 CC 2]4[)]2(12[ +  

26 0 24 24 10 C]13)2(12[)4/1](222[ ++  

 0 16 16 11 CC 2)]2/1(4[]11[)]4/1(222)2/1(131123[ ++++  

27 0 44 44 8 Ctt 2)}1](43{[)1](112[ ++++   

 0 28 28 10 Ctt )}1](1312{[)1](122[ ++++   

28 2 0 56 7 C2)]2/1(4321[ +++   

 0 32 32 10 CC 2)2/1(43[]12[]112[ +++   

30 0 16 16 13 C2]4[)]4/1(222)2/1(131123111[ ++++   

 0 48 48 9 2C 4(1/2)]+3+[1 + C [12] + [222(1/4)]   

 0 24 24 12 [4(1/2)]2C + [12(2)]C + 222(1/4)]+[113   

 1 34 64 7 1)}2C+4](t+2+{[1 + C 1)}+(t{[33(1/3)]  

32 0 32 32 12 2]2C+[1+113]+[112   

 0 8 8 15 C [12]+122]+113+[112  

 0 40 40 11 4(1/2)]2C+[2+[12(2)]C + [131(1/2)]  

33 0 20 20 14 1)}C+(t{[33(2/3)]+1)+122](t+113+[112  

 0 44 44 11 1)}2C+{[1](t+1)}C+33(2/3)](t+{[22+1)+[113](t  

34 0 48 48 11 2C 3]+2+[1+222(1/4)]+[113  

 0 24 24 14 [1]2C+[12]C+222(1/4)]+122+[113  

 0 32 32 13 2C [4(1/2)]+C [12(3)]+222(1/4)]+[131(1/2)  

36 1 12 48 12 C 1)}+13(2)](t+22+{[12  

 2 8 80 8 1)}2C+4](t+3+2+{[1  

 0 40 40 13 1)}2C+{[4](t+1)}C+{[12](t+1)+132](t+[112   
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37 0 44 44 7 

1}C+(t {[33(1/3)]+

 1)+[112](t+2C 1)}+(t {[4]+2C [1]+[122]
 

38 0 56 56 12 3]3C+2+[1 + [12]C + 222(1/4)]+[131(1/2)  

 0 32 32 15 [2]2C + [12(2)]C + 222(1/4)]+131(1/2)+[113  

 0 40 40 14 [2]2C + [12(2)]C + 222(1/4)]+131(1/2)+[113  

39 0 60 60 12 2C [4(1/2)]+[12]C+1}2C+ t4](+{[3+1)+[112](t  

0 44 44 14 C 1)}+33(1/3)](t+22+14+{[12 + 1)+[121](t  

0 36 36 15 1)]2C{[4](tC 1)}+t{33(1/3)](+1)+132](t+[112(2) ++  

40 1 32 72 11 2C 4]+3+2+[1+C [12]  

0 48 48 14 4]2C+[3+[12(2)]C+[112]  

0 24 24 17 [12(3)]C+222(1/2)]+131(1/2)+[113  

41 0 52 52 14 

1)}C+(t{[33(1/3)]+ 1)+[112](t+1)C(t{[33)1/3)]

1)[112](t1)}2C+{[4](t+[2]2C+C [12]+[131(1/2)]

++

++
 

42 1 38 80 11 1)}2C+2(2)](t+{[1+1)}C+33(2/3)](t+{[14  

0 40 40 16 1)}C+33(2/3)](t+14+{[13+1)+113](t+[112  

0 56 56 14 1)}2C2](t{[11)}C+(t{[33(2/3)]+1)+122](t+[112 +++  

0 32 32 17 2C [4(2/3)]+C [12]+222(1/4)]+131(1/2)+123+[111  

0 64 64 13 4]2C+3+[1+[12(2)]C+[222(1/4)]  

0 40 40 18 [4]2C+[12(3)]C+222(1/4)]+[113  

43 1 60 60 14 [1]2C+[122]+1)}2C+4](t+{[3+1)+[112](t  

 0 44 44 16 [1]2C+[122]+1)}C+13](t+{[12+1)+[122](t  

44 0 48 48 16 4(1/2)]2C+2+[1 +C [12]+113]+[112  

 0 24 24 19 [4(1/2)]2C+[12(2)]C+122]+113+[112  

 0 56 56 15 4]2C+[2+[12(3)]C+[131(1/2)]  

 0 72 72 13 4(1/2)]2C+3+2+[1(2) +[122]  

 0 32 32 18 1)+132](t+[112+13]C+[12(2)+[222(1/4)]  

45 0 36 36 18 1)}C+13](t+{[12+1)+132](t+122+[112  

 0 52 52 16 1)}2C+4](t+{[3+1)+132](t+[112(2)  

 0 60 60 15 1)}2C+{[4](t+1)}C+23](t+13+{[12+1)+[112](t  

 0 76 76 13 1)}2C+4](t+3+{[2+1)}C+{[12](t+1)+[113](t  

46 0 64 64 15 3]3C+2+[1+222(1/4)]+[113+[4(1/2)]2C+[12]C  

 0 40 40 18 

[12]2C+

[12]C+222(1/4)]+122+[113+[4(1/2)]2C+[12]C
 

 0 48 48 17 

[4(1/2)]2C +

[12(3)]C+222(1/4)]+[131(1/2)+[4(1/2)]2C+[12]C
 

 0 32 32 19 2C 4]+[1+(1/4)] 222+131(1/2)+123+122+[111  

 0 80 80 13 1)}2C+4](t+2+{[1+1)}+(t{[33(1/3)]+[1]2C+[122]  

47 0 68 68 15 [12]C+[131(1/2)]+1)}2C+4](t+{[3+1)+[112](t  
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    [2]2C+  

0 52 52 17 [2]2C[12]C+[131(1/2)]+1)}C13](t{[12+1)[122](t ++++  

0 44 44 18 

1)}C+t[33(1/3)](+1)+[112](t + 1)}2C+{[4](t

+[4(1/2)]2C+[11]C+222(1/4)]+131(1/2)+[123
 

48 1 16 64 16 [12]C+1)}C+13(2)](t+22+{[12+[4(1/2)]2C   

1 48 96 12 [12]C+1)}C+4](t+3+2+{[1+[4(1/2)]2C   

 0 56 56 17 

 1)}2C+{[4](t+

1)}C+{[12](t+1)+132](t+[112+[4(1/2)]2C+[12]C
 

1 32 80 14 1)}2C+4](t+{[1+1)}C+33(1/3)](t+22+13+{[12]  

0 32 32 20 1)+124](t+132+[112(2)+1)}C+33(1/3)](t+{[14  

0 72 72 15 

1)}2C+(t

4]+2+{[1+1)}C+(t{[33(1/3)]+1)+132](t+[112
  

 0 48 48 18 2]2C+[1(2)+122]+113+[112   

0 24 24 21 [1]2C+[12]C+122(2)]+113+[112  

 0 40 40 19 13]C+[12(4)+222(1/2)]+[131(1/2)   

49 0 36 36 20 

[1]2C+

[122]+1)}C+(t{(33(2/3)]+1)+122](t+113+[112
  

0 60 60 17 

[1]2C +[122]+

1)}2C+{[1](t+1)}C+33(2/3)](t+{[22+1)+[113](t
  

 0 84 84 14 

4(1/2)]2C+3+2+[1

 +1)}2C+{[4](t+1)}C+(t{[33(1/3)]+1)+[112](t
  

 0 44 44 19 

1)}C+13](t+{[12 +

1)+[122](t+[12(2)]C+222(1/4)]+[131(1/2)
  

50 0 64 64 17                                                                       3]2C+2+[1(2)+222(1/4)]+122+[113   

0 40 40 20 [12]C+[1(2)]2C+222(1/4)]+122(2)+[113   

0 48 48 19 4(1/2)]2C+[1+[12(3)]C+222(1/4)]+131(1/2)+[122   

0 72 72 16 4(1/2)]2C+3+2+[1+[12(2)]C+222(1/4)]+[131(1/2)   

0 88 88 14 

1)}2C+4](t+2+{[1

+[2]2C+1)}C+(t{[33(1/2)]+[12]C+[131(1/2)]
  

0 56 56 18 [4]2C+13]C+[12(4)+[222(1/4)]   

0 16 16 23 [12(2)]C+222(1/4)]+122+113(2)+[112   

7. CONCLUDING REMARKS 

In this paper, we have proposed new methods for the construction of block 

designs for comparing test treatments with a control by using cyclic shifts. 

These new designs also provide a flexible family of BTIB  designs but in this 

paper we have only given one representative case for 8=v  and 4=k . The 

complete set of designs is available from the first author on request. These new 
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designs can be considered for the sets of v , k and different values of b , 0r and 

1r . 

An important feature of these designs is that, for all cases the A-optimal design 

may be present in this class. We can use a different rotation to construct the 

tables of these designs. In cases where BIBD  does not exist, we can fill the gap 

by using a regular graph designs (see Iqbal and Jones, 1999). 
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Appendix A 

Majumdar and Notz (1983) gave designs for the following sets of parameters. 

v   k   b   

5 3 10 

6 4 30 

7 4 14 

10 5 30 

4 3 30 

25 6 30 

5 4 30 

Hedayat and Majumdar (1984) gave designs for the following sets of 

parameters. 

b  v  b  v  b  

3, 

6,… 

4 6, 12, 

… 

5 10 

37 8 40 9 24 

4, 

8,… 

5 10, 

20, … 

7 7, 

14, … 

12, 

24, … 

6 18, 

36, … 

7 35 

18, 1 15, 1 33 
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36, … 0 30, …      2 

6 

20, 

40,…, 

1

6 

48 2

1 

21, 

42, … 

48 1

4 

35 1

5 

16 

28 9 12, 

24, … 

  

Ture (1985) gave designs for the following sets of parameters. 

 k  b  

3 3, 4, 5,…, 25. 

3 7, 10, 14, 17, 20, 24. 

3 7, 10, 11, 15, 18, 22, 25. 

3 12, 18, 23, 28. 

4 6, 7, 10, 11, 12, 14,…, 25. 

4 7, 11, …, 14, 17, …, 21, 24, 25. 

5 5, 6, 7, …, 25. 

5 7, 10, 11, 13, 14, 17, 18, 20, 21, 24, 25. 

6 6, 7, 25. 

6 10, 11, 12, 14, 15, 17, 18, …, 22. 

3 2, 6, 10, 12, 13, 16, 18, 19, 22, 24, 25. 

3 7, 12, 17, 21, 24, 28. 

4 4, 5,…, 25. 

4 7, 9, 10, 12, 14, 16, 17, 19, 20, 22, 24. 

4 12, 15, 19, 22, 24, 25, 26, 29. 

5 6, 7, 9… 25. 

5 11, 14, 17, 18, 20, 21, 22, 24, 25.  

6 7, 10, …, 19. 
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Hedayat and Majumdar (1985) gave designs for the following sets of 

parameters. 

v   k   b   

4  4  4, 8, …, 

20.  

9  5  18, 36, 

…, 90.  

16  6  48, 96, 

…, 288.  

8, 

9,10  

8    

10  9    

Stufken (1987) gave designs for the following sets of parameters. 

v      k   b   v      k   b   v      k  b   v      k   b   v     k    b   

3    3     

3 

5    4    

10 

4   3    6 6    4    10 7    4     

7 

8     8    

28 

8     4      

56 

9    4    

12 

9    8      

12 

10    5    

15 

10   9    

30 

11   5     

55 

11   9    

55 

12  5      

33 

12    9    

132 

13   5    
13 

13   10    
39 

14   5    
91 

14  10     
91 

15   10   
15 

15  10  

105 

16   5     

20 

16   10  

30 

17   6      

68 

18    6    

306 

19   6   

171 

20   6     

76 

21   6    

21 

22   6     

462 

23    6    

253 

24  6   

552 

25   6      

30 

26   7    

65 

27   7     

117 

28    7    

126 

29  7   

406 

30   7     

145 
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