
Aligarh Journal of Statistics 

Vol. 28 (2008), 37-45 

 

RECURRENCE RELATIONS FOR SINGLE AND PRODUCT 

MOMENTS OF DUAL GENERALIZED ORDER STATISTICS FROM 

EXPONENTIATED WEIBULL DISTRIBUTION 

 

R.U. Khan, Zaki Anwar and Haseeb Athar 

 

ABSTRACT 

In Burkschat et al. (2003) dual generalized order statistics have been proposed 

that enables a common approach to descendingly ordered random variables like 

reversed ordered order statistics, lower −k th records and lower Pfeifer records. 

With this definition we give recurrence relations for single and product moments 

of dual generalized order statistics from exponentiated Weibull distribution. 

Further some related results and particular cases are discussed. 

 

1. INTRODUCTION 

The concept of generalized order statistics )(gos  was introduced by Kamps 

(1995) as below: 

Let ()F  be an absolutely continuous distribution function )(df  with probability 

density function )( pdf  ()f . Further, let Nn ∈ , 2≥n , 0>k , 
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on the cone )1()0( 1
21

1 −− <≤≤≤<+ FxxxF nL  of nℜ . 

The model of gos  contains as special cases, order statistics )1,0( == km , 

−k th record values 1( 121 −==== −nmmm L , ie. ki =γ , )Nk ∈ , sequential 

order statistics ii in αγ )1(( +−= ; )0,,, 21 >nααα L , order statistics with non-

integral sample size 1( +−= ii αγ , )0>α . But when ()F  is an inverse 

distribution function, we need a concept of dual generalized order statistics, 

which was introduced by Burkschat et al. (2003) as follows: 
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Let Nn∈ , 1≥k , Rm ∈ , be the parameters such that 0>+−+= rr Mrnkγ , 

∑
−

=

=
1n

rj
jr mM  ∀  nr ≤≤1 . By the dual gos  from an absolutely continuous 

distribution function ()F  with density function ()f  we mean random variables 

),~,,(,),,~,,1( kmnnXkmnX ′′ L  having joint density function of the form 
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for )0()1( 1
21

1 −− >≥≥≥> FxxxF nL . 

Here we may consider two cases: 

Case I:    mmm ji == , 1,,2,1, −= nji L . 

The density function of −r th dual generalized order statistic is given by 
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 The joint density function of −r th and −s th dual generalized order statistics is 
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Case II: ji γγ ≠ , ji ≠ , 1,,2,1, −= nji L . 

The pdf  of −r th dual generalized order statistic is given by 
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and the joint pdf  of −r th and −s th dual generalized order statistics is 
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A random variable X  is said to have exponentiated Weibull distribution 

(Mudholkar et al., 1995) if its pdf  is given by 

 1)()(1 ]   1[)( −−−− −= τλλθθ θθ
λθτ xx

eexxf , 0>x , 0>λ , 0>θ , 0>τ  

                      (1.7) 

and the corresponding df  is 

 τλ θ
]1[)( )( x

exF
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Therefore, in view of (1.7) and (1.8), we have 

 )(]1[
1
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xfexxF
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.            (1.9) 

For more details on this distribution and its application one may refer to 

Mudholkar and Hutson (1996) and Nassar and Eissa (2003). 

In this paper we have exploited the relation (1.9) to obtain the recurrence 

relations for single and product moments of dual generalized order statistics for 

the distribution as given in (1.7). 
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2. RECURRENCE RELATIONS FOR SINGLE MOMENTS 

Before coming to the main results we shall prove the following lemma: 

Case I:    mmm ji == ,   1,,2,1, −= nji L . 

Lemma 2.1: For  nr ≤≤2 ,  2≥n   and  L,2,1=k . 
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Proof:   We have, 
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and hence integrating by parts, we get the result. 

Lemma 2.2: For  nr ≤≤2 ,  2≥n   and  L,2,1=k . 
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Proof:    Proof follows on the lines of Lemma 2.1. 
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Theorem 2.1:    For the distribution given in (1.8) and for nr ≤≤2 ,  2≥n   

and  L,2,1=k  
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Proof:    From (1.9) and (2.1), we have 

 )],,,1([)],,,([ kmnrXEkmnrXE
jj −′−′  

     ∫
∞ −

−
−−−














−

−
−=

0

1
)(1

111 ))(()(
]1[

)]([
)!1(

dxxFgxf
ex

xFx
r

Cj r
m

x
j

r

r r
θ

λθ
γ

λθτγ

θ

 

     




−
−= ∫

∞ −−−
0

111 ))(()()]([)(
)!1(

dxxFgxfxFx
r

Cj r
m

r

r

rγ
θ

ψ
λθτγ

 

  




−
− ∫

∞ −−−−
0

111 ))(()()]([
)!1(

dxxFgxfxFx
r

C r
m

jr rγθ  

and hence the result. 

Remark 2.1:  For 0=m , 1=k , the recurrence relation for dual generalized 

order statistics reduces to the recurrence relation of ordinary order statistics as 
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Remark 2.2:  The recurrence relation for single moment of −k th lower 

record statistics )1( −=m  will be 
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Remark 2.3:  For 0=m  and 1+−= nk α , +ℜ∈α , the recurrence relation 

for single moments of dual order statistics with non-integral sample size is 
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Remark 2.4:   For 1−= αm  and α=k , the recurrence relation for 

sequential order statistics is 
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Theorem 2.2:    For the distribution given in (1.8) and for nr ≤≤2 ,  2≥n   

and  L,2,1=k . 
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Proof:    Results can be established in view of Lemma 2.2 and (1.9). 

Case II: ji γγ ≠ , ji ≠ , 1,,2,1, −= nji L . 

Lemma 2.3: For nr ≤≤2 ,  2≥n   and  L,2,1=k . 
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Now integrating in (2.14) by parts and noting that 0)(
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the result. 

Theorem 2.3: For the distribution given in (1.8) and nr ≤≤2 ,  2≥n   and  

L,2,1=k . 
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Proof: Proof follows on the lines of Theorem 2.1 using (1.9) and lemma 2.3. 

Remark 2.5: Theorem 2.1 can be deduced from Theorem 2.3 by replacing m~  

with m , 1−≠m . Remaining relations for case II, )( ji γγ ≠  can be established 

by replacing m  with m~  in Theorem 2.2. 

3. RECURRENCE RELATIONS FOR PRODUCT MOMENTS 

Case I:    mmm ji == , 1,,2,1, −= nji L . 

Lemma 3.1: For 11 −≤<≤ nsr ,  2≥n  and L,2,1=k . 
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Proof:    We have, 
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Taking into account the value of (3.4) in (3.2), we get 
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Now in view of (3.3), 
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and hence the result. 

Theorem 3.1: For the distribution given in (1.8) and for 11 −≤<≤ nsr , 

2≥n  and L,2,1=k  
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where 
θλθψ )(),( xji

eyxyx
−= . 

Proof:   The result can be established in view of (1.9) and lemma 3.1. 

Remark 3.1: Under the assumption given in Theorem 3.1 with 1=k , 0=m , 

we get the recurrence relation for product moments of dual order statistics and at 

1−=m , we have the recurrence relations for product moments of dual −k th 

record values. 

Case II: ji γγ ≠ , ji ≠ , 1,,2,1, −= nji L . 

Results can be established by replacing m  with m~ . 

Note: For 1=θ , 1=τ  the distribution reduces to exponential distribution. 
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