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ABSTRACT

The present paper analyses a transshipment problem whose objective function is
fractional where the demand considered is uncertain. The objective here is to
maximize the net expected revenue per unit transportation cost, i.e., the total
expected revenue minus the transportation and transshipments cost. The stochastic
transshipment problem is converted to an equivalent deterministic transportation
problem. An algorithm is developed for the deterministic transportation problem
and is numerically illustrated.

1. INTRODUCTION

Orden (1956) proposed a generalized transportation model in which
transshipment through intermediate points is permitted. The purpose of this
paper is to study the transshipment type fractional programming problem in
which the parameters of only the numerator are affected by stochastic
uncertainties with known probability distributions. The objective is to maximize
the net expected revenue which is defined as the total expected revenue minus
the sum of transportation and transshipment costs. In this paper transshipment
problem that often occurs in the distribution system of the national department
store chain is considered, treating the demands as uncertain. The algorithm
developed for the resulting deterministic problem, itself is the outcome of the
basic result that for linear fractional programming the absolute minimum occurs
at a basic feasible solution. The technique applied by Ferguson and Dantzig
(1956) and Garwin (1963) are used for dealing the problems under stochastic
environment.

2. NOTATIONS AND THE FORMULATION OF THE PROBLEM

We consider a transshipment problem with m sources and n sinks numbered as
1,2,---,m and n sinks numbered as m+1,m+2,---,m+n.

Let

a; = the quantity available at source i=1,2,---,m

Q
Il

the quantity demanded at sink j=m+1,m+2,---,m+n

=
I

the quantity shipped from station i to j (i, j=1,2,---,m+n)
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cjj = the per unit shipment cost from station i to j (i, j=12,---,m+n)
u; = quantity transshipped at the station i (i=1,2,---,m+ n)

¢; = per unit transshipment cost (including unloading, reloading, and

storage etc.) at the station i (i=1,2,---,m+n).

The problem is to determine x; so as to minimize the total cost of

transportation and transshipment. It may be mathematically stated as under:

Problem P;: Find X;j SO as to

m+n*m+n* m+n

Minimize Z = Z z Cl'jxl'j + ZCiui (21)
subject to

min., a; +u; i=1,2,---,m

Z xij = . (22)

= u; i=m+1,--- . m+n

min Uj; j=L2,---.m

2 %= . 2.3)

Pt dj+uj j=m+1,---,m+n

Xj >0 forall i and j 2.4)

m+n
Z ~ indicates that the term j=i is excluded from the sum. The constraints

j=1

(2.2) implies that the total quantity that leaves the source i (=1,2,---,m) is equal
to the quantity available plus the quantity transshipped and the total quantity that
leaves the sink i (=m+1,m+2,---,m+ n) is equal to the quantity transshipped.
Similarly constraints (2.3) implies that the total quantity that arrives at a source
i (=1,2,---,m) is equal to the quantity that source transships and the total
arriving at a sink is equal to the demand at that sink plus the quantity that the
sink transships. Constraints (2.4) are the usual nonnegative restrictions. Here u;

are unknown, so we impose an upper bound u (say), on the amount that can be
transshipped at any point, so that

u; =u, —X;;, i=12,---,m, (2.5)

where x;; is a nonnegative slack. After substituting (2.5) in (2.1) to (2.3) and on

simplifying the original transshipment problem P, is reduced to the following
genuine transportation type linear programming problem.
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Problem P5:
m+nm+n m+n
Minimize Z= )| Zcijxij + Y cu;
i=1 j=1 i=1
subject to
mtn a; +u, i=1,2,---,m
2% = o (2.6)
i u, i=m+1,---,m+n
m+n u, j=1,2,---,m
Z“xij:{d~+u j=m+1,---,m+n @.7)
i=1 jTHe J >
x;; 20, (2.8)
where c¢;; =—c;, and the asterisk (*) on the summations has now been

disappeared. As u; 20, we must have x; <u,, which is guaranteed by
equations (2.6) — (2.7), because any x; will always appear in one equation that
has u, on the right hand side. Here, the upper bound u, can interpreted as the

size of a fictitious stockpile at each source and sink which is large enough to
take care of all transshipments. Assume initially a value for u, which is

sufficiently large to ensure that all x; will be in the optimal basis. Such a value

can be easily found as the volume of goods transshipped at any point cannot
exceed the total volume of goods produced (or received). Hence, set,

m
U, =4 (2.9)
i=1

which ensures that ug is not limiting. The unused stockpile at the station

i=12,---,m+n, if any, will be absorbed in the slack x;; .

3. PROBLEM REFORMULATION UNDER STOCHASTIC
ENVIRONMENT

Till now, we have treated the demand d j as uncertain as if they are fixed
constraints. However, for our study, we assume d j asan independent discrete

random variable with known probability distributions. Let the unit selling price
of the product shipped at j—th destination be s ;. Let the per unit loss due to

pilferage etc on the route (i, j) be p;;. The objective function can be written as

the objective is to maximize the net expected revenue (minimize Z ), that is
defines as the total expected revenue minus the loss in transshipment. To take
care of the randomness of demands, instead of minimizing the total cost, we take
our objective as the maximization of the net expected revenue (i.e., total
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expected revenue minus transshipment and transportation costs). Here
¢;(s;,y;) 1s an unknown function that describes the expected revenue from

destination j if a total of y; unit is shipped to this destination.

Problem P;:
m+n m+n m+n
2 2 P X = 20055,y ))
Min z=-2 J=1 3.1)
m+n m+n m+n ’
2 2 Cij Xij — 2.Cily
i=l =l i=1
subject to
mi” a; +u, i=12,---,m 32)
X;i = :
= Y u, i=m+1,---,.m+n
e fu, j=1,2,m 53
oY |djtu,  jEm+lmtn )
x;; 20 (3.4

m+n

Here the third term of the right hand side viz. ) c¢; u, can be adjusted in the
i=1

second term as u; =u, — x;;, and is treated as constant.

4. THE EQUIVALENT DETERMINISTIC PROBLEM

Let the demand d ;'s at various destinations be independent random variables

and the probability distribution of d j (j=1,2,---,n) be in increasing order as

follows:
Demand d] dl] < d2] < dH]j
p(dj=dp;)=py, Pij P2j PHj
H; H;
PUj2di) = | my=3py | Toj=2py | - | FH T PHj
h=1 h=2

To determine the function ¢@;(s;,y;) note that y;, the net quantity shipped to
sink j, can be any amount between the lowest value d;; and the highest value

d Hjj in the probability distribution of the demand d ; (j=12,---,n).
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If 0<y;<d;;, then each of the y; units shall be absorbed with probability
7l'1j =D,
Hence, the expected revenue is =57y ;.

If dij<y;<dj;, then each unit upto dj; shall be absorbed with probability

7l'1j

probability 75 ;.

and each of the additional units (y j_dl j) shall be absorbed with

Hence, the expected revenue is = ;7 ;dy j + 57 ; (yj —dy ) -
So, in general, if dj; <y; <dj,;, then the expected revenue is

S {ﬂ-ljdlj +7Z'2j (dzj _dlj)++ﬂ-hj (dh] _dh—lj)+7zh+lj (y] _dh])}

Let us now break y j into incremental units Vhj (h=12,--H j) as:

Y=y vyttt Ve 4.1)
OSyl]Sdlj =Flj
OSyZJSdZJ_dlj :F2j

where ‘ ‘ ‘ ‘ 4.2)
Osyp;jSdp,;j=du;-1,j =Fn,j

Relation (4.1) makes physical sense only if there exists some h=/h; (say) such
that all intervals below the A ; —th interval are filled to capacity and all intervals

above it are empty i.e.

yhj:th (h=1,2,"',hj—1)
Yrj < Fpj (h=h;) (4.3)
yh]=0 (h=h]+l,,H])

Assuming for the time being that the conditions (4.3) hold, the total expected
revenue from sink j is:

H:
j

G (sj,j)= 2.8 7 Y 4.4
h=1

Substituting the value of ¢ i (s sy j) from (4.4) in (3.1) and treating both Xij and

Yhj as decision variables, the deterministic equivalent to Problem P3, is:
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Problem P,.
m+nm+n m+n
Z Z PijXij + Z:thyhj e
Min z=-=1J2 /=L =ZL (4.5)
m+nm+n Z2
2 2%
i=l j=1

where (B =5 j7p) .

. man a; +u, i=1,2,---,m
Subjectto D x;; = . (4.6)
o u i=m+1,---,m+n
Jj=1 0
m+n
inj =ug, j=12,---,m G
i=1
m+n H;
inj_ Ypj=ug, Jj=m+l-m+n 4.8)
i=1 h=1
Yrj < Fpi (Y, ) (4.10)

and subject to the additional stipulation that the constraints (4.3) are also
satisfied.

Fortunately, it turns out that (4.3) do not restrict our choice of optimum solution
in any way. This can be handled by the theorem as given by Javaid et al. (1998).

5. PRELIMINARIES TO THE SOLUTION OF PROBLEM P,

i) It is assumed that the set of all feasible solutions of Problem P, is regular
(i.e. non- empty and bounded) and that the denominator of the objective
function is positive for all feasible solution, Bela Martos (1968) and Cooper
(1962).

i1) Since the deterministic Problem P, is a transportation type fractional linear
programming problem, its global minimum exists at a basic feasible solution
of its constraints, Javaid et al. (1998).

iii) A global minima to the problem exist at a basic feasible solution to the
capacitated system.

iv) As none of the equations (4.6) and (4.7) is redundant, a basic feasible
solution to the original system shall contain (m+n) basic variables. We

shall, hereinafter, call the constraints (4.5) through (4.9) as the original
system and the constraints (4.5) through (4.10) as the capacitated system.
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v) As none of the constraints in the original system is redundant, a basic
feasible solution to the original system shall contain 2(m+n) basic

variables. For the capacitated system also, a basic feasible solution shall
contain 2(m+ n) basic variables and the same may be found by working on
the original system provided that some of the non basic variables are
allowed to take their upper bound values, Dantzig (1963).

The special structure of Problem P,, permits us to arrange it into an array as
shown below, Garwin (1963).

Table 1:
X1 Xim Xm+1 Xm+n a +i
pl 1 0 Pim  Cim Pim+1  Clm+l Pim+n  Clm+n
Xml Xmm Xmm+1 Xmm+n apm 1o
Pml Cml Pmm  Cmm Pmm+l Cmm+l Pmm+n  Cmm+n
Xm4nl Xm+nm Xm+nm+l Xm+nm+n ap T
Pm+nl Cm+nl Pm+nm  Cm+nm Pm+nm+l  Cm+nm+l Pm+nm+n  Cm+nm+n
) ) Vm+1 Flm+1 Vim+n Flm+n
ﬂ1m+l X+l :Bl m+n Amtn
YHm+1 FHm+1 YHm+n FHWH—n
ﬁHm+1 OHm+1 IBHm+n CHm+n
0 0

In the above table, there are (m+mn) rows in columns j=12,---,m and

(m+n+H) rows in columns j=m+1,---,m+n. Here H :max.Hj, so that

there shall be some empty boxes near the bottom of the table in columns
j=m+1,---,m+n. These empty boxes shall be crossed out.

Absence of the row totals for y;;'s in the table indicates that there are no row

equations for Yhj variables. Besides, to obtain the column equations (4.8), each

Yhj has to be multiplied by (—1). We have omitted (—1) from Yhj boxes for

convenience.
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6. INITIAL BASIC FEASIBLE SOLUTION AND OPTIMALITY
CRITERIA

To start with, we fix the demands d ;'s approximately equal to their expected

m+n m

values such that D d; =) a; and also such that for all j except j = j ", each
Jj=m+1 i=l1
d; falls at the upper end of one of the intervals yj; into which d; has been
j
divided, i.e., d; = Zth for some h; < H; and for all j except j= j* (the
h=1

d ; can always be so chosen that it is done).

With these fixed demands the upper portion of the Table 1 resembles a
(m+n)x(m+n) standard transportation problem for which an initial basic

feasible solution with {2(m + n)—1} basic variables is obtained by any of the
several available methods. Now, in each of the columns j=m+1,---,m +n, the
values of the non basic yj;'s are entered at their upper bounds in turn

h=1,2,--- until we have entered enough non basic y hj 's so that their sum over

h is equal to d ;. Obviously, we shall never have to enter y,; below its upper
bound except in column j = j* , where the last nonzero entry will be y W < th* .
This last entry and the {2(m+n)—1} basic xii's found earlier constitute the
required initial basic feasible solution with 2 (m + n) basic variables. In case the

last non zero entry in column j " is also at its upper bound, then we take the last
yp; entry of any column as our 2(m + n) — th basic variable.

Let the simplex multipliers corresponding to the objective function Z; (Problem
Py be w; and v; (V i,j=L2,---;m+n) and Z, be g and v,
~V i, j=L2,---,m+n)

These are determined by solving the following equations.

Pij tui +v; =0 for basic Xij
6.1
,th —v; =0 forbasic yj; ©D
cjj + 4 +v;=0 forbasic x;; }
. (6.2)
—v; =0 forbasic yj

Each of the system (6.1) and (6.2) have 2(m+ n) linear equations in as many

unknowns u;, v;, #; and v; and can be easily solved. Let the relative cost
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coefficients corresponding to the variables x;; and yj; be p{j and ,B;U for Z;

and Cj; and ay; for Z,.
These are determined by solving the following equations

’
pij =p;j +u; +v;  fornon basic x;

, S (6.3)
ﬂhj =,3hj -v; for non basic y;
Cz:j =c;j +H; +vj  fornon bas%c Xjj 6.4)
Apj ==V for non basic yj;

The relative cost coefficients for basic variables and the values of the non
basicx;;'s are zero. As regards the values of non basic yj;'s- some are zero

and others at upper bounds.

It can be easily shown that for a given basic feasible solution (x;;, y5;) of the
Problem P, the value of the objective function Z is
m+n m+n m+n m+n
Z Zpl]xl]+z Zﬁh]yh] Zu (a; +u0)+ ZV %o
i=1 j=1 =1 h=l =1 Z
7= Jj= Jj= Jj= _Z1
m+n m+n m+n H m+n Z,
Z zcyxz]+z Zah]yh] z/uz (a; +ug) + zv iuo
i=l j=l1 j=1 h=1 i=1 j=1

(6.5)

Here, C =0 for all basic x; i and also the values of the non basic x; j are zero.
So, the first term on the right hand side of (6.3) vanishes. Similarly th =0 for
the basic yj;, but as regards the values of non basic yj;'s - some are zero and

the others are at their upper bounds. Hence,

mn Hj m+n
Z z :Bh]Fh] Zu (a; +ug)+ ZV U
z=" A 4 6.6)
m+n*H m+n Z
Z Z ah]Fh] Z,u, (a +uo)+ Z'U iuQ
i=l j=1 i=1 j=1

where )’ " indicates the sum over those non basic ypj Which are at their upper
bounds. Now if the value of any one of the non basic variables xg or y, is

changed to

X =(xg +6) or J,=(y,10)
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with the other non basic variables remaining unaltered and the basic variables

adjusted to maintain feasibility of the solution, then the improved value of Z

shall be
ZA= Zl +0.p;f or 2: Zl +0.ﬁ;;t

22 + H.Cst Zz + 19.a’rt

as the case may be. It is important to note that we take plus sign if y,, =0 and

minus sign if y,, =F,;.

The objective function will improve iff Z-7<0,ie.

Z +0.py _é<0 +Z1+6-ﬁ;t _ﬂ<

+ 0
Zz +9.C;t Zz Z2 +a9.0{;, Zz

ie., 6(1);1,‘22 —C;tZ1)<0 or i&(ﬁ;tZz —a;tZ1)<0.

Since, in the non degenerate case 8 >0 and in degenerate case 8 =0,

= 7Z=Z.
Defining {fy B p,’-]’-Zz - Cl{j,Zl
By = BhiZo — ayiZy
Thus, the current solution is optimum iff
Bl-j >0 (¥ non basic Xjj )
Ehj >0 (¥ non basic yij atzero level) (6.7)
B h <0 (V non basic yy,; at upper bound)

If any of the optimality criteria (6.7) is violated, the current solution can be
improved. The non basic variable which violates (6.7) most severely is selected
to enter the basis. The values of the new basic variables are found by applying
the usual 0 -adjustments. It should, however, be kept in mind that the coefficient
of each y hj in column equations (4.8) is (1) . The variable to leave the basis is

the one that becomes either zero or equal to its upper bound. If two or more
basic variables reach zero or their upper bounds simultaneously then only one of
them becomes non basic. Should it happen that the entering variable itself
attains upper or lower bound (zero) without simultaneously making any of the
basic variables zero or equal to its upper bounds, the set of basic variables
remains unaltered; only their values are changed to allow the so-called entering
variable to be fixed at its upper or lower bound.

Finiteness

The process is bound to terminate with a finite number of iterations as it
involves movement from one basic feasible solution to another basic feasible
solution, which is finite in number.
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7. ALGORITHM OF THE DETERMINISTIC PROBLEM

The step-by-step computational algorithm for determining the optimum solution
is given as follows:

Step 1- First of all calculates initial/improved basic feasible solution and
records them in a working table.

Step 2- Then obtain the values of simplex multipliers (u;,v;,u; and

v;)and relative cost coefficients by given equations from equations

(6.1), (6.2), (6.3) and (6.4) and record them in current working
table.

Step 3- Calculate the value of the objective function Z by the equation (4.5).

Step 4- Then for the non-basic variables, calculate Bij and Ehj and test

whether the solution is optimum or not. If yes, the process terminates and if not,
proceed to find the B; (or ﬁhj) which violates the optimality criteria (6.7),

most severely.

Step 5- Find the entering variable as the one who’s corresponding Bj;
(or ,th ) violates the optimality criteria most severely.

Step 6- Apply @ —adjustments and determine the outgoing variable (if any) and
find the maximum value 8.

Step 7- Go to step 1.

8. NUMERICAL EXAMPLE

Consider the transportation problem from source to sink with a;, ¢;; and s; as
given in Table (N —1) and the probability distribution of d j in able (N -5).
The values of Ry; and Fj; are calculated in Table (N —5). The various costs

associated with transshipment are given in Table (N —2) and Table (N —3).

Also the initial basic feasible solution of the transportation problem by North-
west corner rule also given in Table (N —4).

Working tables for determining optimal solution are given in Table (N —6), in
which the entries in x; and y,; boxes are as follows:

Xij Bjj Vhj By,

Pij Cjj B o
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Here, the presence of smaller box in the y;; box indicates a non-basic variable at

its upper bound shipping.

A B a;
I 0 5 2 3 10
I 0 4 1 2 5
I 1 7 0 1 6
S 10 5

Table (N-1):  Transportation from source to sink

I II III
I 0 0 0 5 4 6
II 2 4 0 0 3 2
I 4 6 3 2 0 0

Table (N-2):  Transshipment from source to source
A B

A 0 0 2 3
B 2 3 0 0

Table (N-3):  Transshipment from sink to sink

A B a;
I 9
0 5 2 3 9
I 3 2
0 4 1 2 5
I 6
1 7 0 1 6
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Table (N-4):  IBF Solution by North-West Corner Rule

J d; Phj Ty Ryj =57y Fy

1 9 0.2 1.0 -10 9
12 0.6 0.8 -7 3
16 0.2 0.2 -2 5

2 7 0.2 1.0 -5 7
10 0.8 0.8 -4 3

Table (N-5):  Assumed distribution of d j

Iteration-1

Step-1:-  In order to obtain initial basic feasible solution we fix the demands
at by =12 and b, =9, and then we determine a starting basic feasible solution

to the standard transportation problem by the North-West corner Rule. Then a
standard transshipment problem is formed with the initial basic solution as:

X11=21, X14=10, X22=21,
.X24=2, X25=3, X33=21,
X35=6, X44=21, X55=21.

To obtain the IBFS to the deterministic equivalent transportation problem, we
assign y, entries at their upper bounds (as far as possible) so that the column

equations are satisfied.
We get,

=9, yau=3, yn=7
and

¥22=2 (<Rp).

This provides the required initial basic feasible solution with x771, X1, X297,

x3p and y,, as the basic variables.

Step-2:-  The simplex multipliers (u;, v;, #; and v;) and the relative cost

coefficients are determined.

Step 3:-  The value of Z, by using equation 6.6, is found to be —2.157.
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20 9 31
0 2 4 |4 6 |0 5 |2 3
20 3| 3| 26
2 4 o o |3 2 Jo 4 |1 2
20 6 27
4 6 |3 2 Jo o |1 7 Jo 1
20 21
0o 5 |4 1 |1 7 Jo o |5 4
20 21
2 3 |12 Jo 1 |5 4 o o0
21 21 21 717%%%% %%
9 6
-5 -10|-1 -5
3| 2 |
-3 -7 —4
-2 -
21 21

Table (N-6): Deterministic version of Problem P,

After the Third iteration the optimal solution has been attained as:
Z,pr =—2.16,

x11=2l, x14=10, x22:21, x24:1, x25=4, X33=21, X35=6,
X44=21, X55 =21.
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