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ABSTRACT 

In the present paper an axiomatic characterization of non-additive measures of 

‘useful’ information associated with a pair of probability distributions of a sample 

space having utility distribution corresponding to the same number of elements in 

both probability distributions has been studied. The quantity so obtained under 

additional suitable postulates leads to the generalized measures of ‘useful’ relative 

information, information improvement and J-divergence. Particular cases and 

important properties of the measures so obtained have also been studied. 

 

1. INTRODUCTION 

Let ),,( PAΩ be the probability space, where Ω  is a set of all possible outcomes 

in an experiment, A  is −σ algebra of all subsets of Ω  i.e. a set of all possible 

events and P  is the probability measure such that kk pAP =)(  for each 

AAk ∈ . 

Let us consider a generalized probability distribution 

),,,{( 21 npppP L= ; 10 ≤< ip  for each i  and 1

1

≤∑
=

n

i

ip } together with utility 

distribution ),,,( 21 nuuuU L= ; where 0>ku  is the utility or importance of an 

event AAk ∈  and is independent of its probability of occurrence kp . 

Let 

 ++ →×∆ RRI
n

nn : , 2≥n  

where  ),,,{( 21 nn ppp L=∆ ; 10 ≤< ip  for each i  and 1

1

≤∑
=

n

i

ip } 

 ),0( ∞=+R  and  ),,,{( 21 n
n

uuuR L=+ ; 0>iu  for every i } 

Then Belis and Guiasu (1968) quantitative-qualitative measure is defined 
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which was called ‘useful’ information measure by Longo (1972). 

Measure (1.1) satisfies additivity of the following type: 

 );();()*;*( VQIUUPIVVUQPI mnnm +=           (1.2) 
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Further by considering posterior probability distribution nP ∆∈  on the basis of 

an experiment where predicted probability distribution is nQ ∆∈  and having the 

utility distribution n
RU +∈ , the following measure was defined and characterized 

by Taneja and Tuteja (1984, 1985) for complete probability distributions:                                    

 ∑
=

=
n

i

iiiin qppuUQPI

1

)/(log);/(              (1.3) 

The measure satisfies the additivity of the type (1.2) and is called ‘useful’ 

relative information or directed divergence measure with preference. 

The following non-additive ‘useful’ information of degree β  was first 

introduced and characterized by Sharma et al. (1978): 
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Corresponding to (1.4) Taneja (1985) characterized and studied the generalized 

measure of ‘useful’ relative information of degree β  given by 
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In case 1→β , the measures (1.4) and (1.5) reduce to (1.1) and (1.3) 

respectively. Further, if utilities are ignored these reduce respectively to 

Shannon’s entropy and Kulback’s measure of relative information for 

generalized probability distributions. 

Hooda and Tuteja (1981) further generalized the measure given by (1.4) and 

obtained the following measure: 
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where α  and β  are arbitrary real constants satisfying either 1. >α , 10 ≤< β  or  

1>β , 10 ≤< α . This measure was called as the generalized measure of type α  

and degree β . It reduces to (1.4) when 1=α . 

Let nR ∆∈  be the revised probability distribution of a predicted probability 

distribution nQ ∆∈ , where P  is the actually realized probability distribution in 

an experiment having utility distribution ),,,( 21 nuuuU L=  then the ‘useful’ 

relative information from P  to Q  is given by 
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and the ‘useful’ relative information from P  to Q  is given by 
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The ‘useful’ information improvement measure is defined as 
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which reduces to Singh and Bhardwaj’s (1991) measure of ‘useful’ information 

improvement in case 1

1

=∑
=

n

i

ip . 

In the present communication, some non-additive generalized measures of 

‘useful’ relative information, information improvement and −J divergence 

containing the parameters α and β  have been characterized axiomatically by a 

general method. Their particular cases and important properties have also been 

studied. 

2. CHARACTERIZATION OF NON-ADDITIVE ‘USEFUL’ 

INFORMATION 

Let ),,( PAΩ be the probability space as defined in section 1. Let P  and Q  be 

respectively posterior and prior generalized probability distributions and U  be a 

utility distribution of some goal oriented experiment defined on A , where U  in 

general is independent of P  and Q . 

Let 

 ++ →×∆ RRI
n

nn
** : ,  2≥n  

where 
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and 

 ),0( ∞=+R  satisfies the following postulates: 
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Postulate 2.1: 

 })1{;}{/}1({*
qI , })1{;}1{/}({*

pI  and }){;}1{/}1({*
uI  are continuous 

functions of  ]1,0(, ∈qp  and ),0( ∞∈u . 

Postulate 2.2:  

 }],,,{;},,,{/},,,[{ 212121
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 }]{};/{}[{*
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where 0≠c  and 0>β  are some arbitrary constants. 

Now we prove the following lemma: 

Lemma 2.1: The measure }){;}/{}({*
uqpI of ‘useful’ information for 

0],1,0(, >∈ uqp and satisfying postulates (2.1) and (2.2) is given by 

 
12

)1(
}){;}/{}({

1

*

−

−
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−α

µλδβ
uqpu

uqpI , 0,1 ≥≠ βα        (2.1) 

And µλδ ,,  are arbitrary constants 

Proof: 

Let 

 );/(}){;}/{}({*
uqpfuqpI =               (2.2) 

Then postulate (2.2) for 1=n  gives 

 );/();/();/();/();/( zyxfuqpfczyxfuuqpfzuzqypxf ++= ββ  

                      (2.3) 

Setting );/();/( uqpuuqpf φβ=  in (2.3), we have 

 );/();/();/();/();/( zyxuqpczyxuqpuzqypx φφφφφ ++=      (2.4) 

and 

 );1/1()1;/();1/1()1;/();/( uqpcuqpuqp φφφφφ ++=        (2.5) 
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Further 

 )1;/1()1;1/()1;/1()1;1/()1;/( qpcqpqp φφφφφ ++=        (2.6) 

Again setting 1== qp , 1== yx  in (2.4), we have 

 );1/1();1/1();1/1();1/1();1/1( zuczuuz φφφφφ ++=                          (2.7) 

Equation (2.7) can be written as 

 )];1/1(1[];1/1(1[);1/1(1 zcucuzc φφφ ++=+                                        (2.8) 

Setting )();1/1(1 uHuc =+ φ  in (2.8) we get 

 )()()( zHuHuzH =                 (2.9) 

By postulate (2.1), );1/1( uφ is a continuous function of u , hence )(uH  is also 

a continuous function of u. 0)( =uH  is also a solution, but it is insignificant. 

Thus we consider only non-zero continuous solution of (2.9), which is of the 

form ,)( µ
uuH =   µ being some arbitrary constant. [Refer Aczel (1966), P41]. 

Therefore  
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where µ  and  0≠c  are arbitrary constants. 

Similarly 
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where 0and, ≠cδλ are arbitrary constants. 

Putting (2.11) and (2.12) in (2.6), we get 
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Putting (2.13) and (2.10) in (2.5), we have 
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Finally from );/();/( uqpuuqpf φβ= , we get 
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            (2.15) 

where µδλβ ,,,  and 0≠c  are  arbitrary  constants. In particular we can take 

12 1 −= −α
c , 1≠α  in (2.15), which give (2.1). Next we characterize the non-

additive measure of ‘useful’ relative information in the following theorem. 

Theorem 2.1: The non-additive measure of ‘useful’ information );/( UQPI  

satisfying postulates 2.1, 2.2 and 

Postulate 2.3: 

 1})1{;}2/1{/}1{* =I  

Postulate 2.4: In particular, 

 0);/(* =UPPI  

 0})1{;}2/1/{}2/1({}){;}1/{}1({ ** == IuI  
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is given by 
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where 1,0,0 ≤<> iii qpu  for each i , 0>β  and 1≠α  
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Proof:   By postulates 2.3 and 2.4, (2.15) gives 

 0,1 =−= µαλ  and 1−= αδ             (2.18) 

Substituting the values from (2.18) in (2.15), we get 

 
12

)1(
);/(

1

11

−

−
=

−

−−

α

ααβ
qpu

uqpf            (2.19) 

By using postulate 2.5 in (219), we have 
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                   (2.20) 

We may call (2.20) as the non-additive generalized measure of ‘useful’ relative 

information of order α  and degree β . 

Particular Cases: 

Case 2.1) When 1=β  (2.20) reduces to  
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which is the  non-additive  ‘useful’  relative  information  of order α   studied by  

Taneja (1985). In case 1

1

=∑
=

n

i

ip , then (2.21) reduces to 
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which is  non-additive  generalized  measure of ‘useful’ relative  information 

characterized by Hooda (1984). Further 
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which is ‘useful’ relative information defined and characterized by Hooda 

(1983). 

Case 2.2) If utilities are ignored, i.e. 1=iu for each i , then (2.20) reduces to 
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which is non-additive directed divergence measure of order α  and type β  

characterized by Patni and Jain (1977). 

Further, if we put 1=β  in (2.24), we get 
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which is a non-additive directed divergence measure of order α  introduced by 

Nath (1972). 

3. MEASURES OF ‘USEFUL’ INFORMATION IMPROVEMENT AND 

J-DIVERGENCE 

Let ++ →×∆ RRI
n
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satisfying the postulates 2.1 – 2.5 of the previous  section. Then by following the 

same procedure, we have 
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We may call the measure (3.2) as the non-additive generalized measure of 

‘useful’ information improvement of type α and degree β . The non-additive 

generalized measure of ‘useful’ −J divergence of type α and degree β  is 

given by 
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                      (3.3) 

Particular Cases: 

Case 3.1) When 1=β , and 1→α , (3.2) reduces to 
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which is (1.9). 
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Case 3.2) When  1=β , and 1→α , 
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which is a ‘useful’ −J divergence measure. 

Properties: 

Next we study major properties satisfied by the non-additive generalized 

‘useful’ relative information measure of order α  and type β . 

Property 3.1) Symmetry 

The measure );/( UQPI
β
α is a symmetric   function of its argument, that is 
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Property 3.2) Normality 

Assuming 00log0 = , we have 

 1}),1{;}2/1,2/1/{}0,1({* =uI  

Property 3.3) Decisivity 
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Property 3.4) Continuity 
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Property 3.5) Expansibility 
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Property 3.6) Non-additivity 

The measure );/( UQPI
β
α satisfies the non-additivity as follows: 
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The above-mentioned properties can be verified easily. 

Property 3.7) Recursivity or Branching Property 

Let ji AA ,  be two events having probabilities ji pp ,  and utilities ji uu ,  

respectively, then we define the utility of the compound event ji AA ∪  as 
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Proof:  We have 
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This completes the proof of theorem 3.1. 
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